
CSSE 120 – Introduction to Software DevelopmentSession 27

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: Session27_CharactersAndStrings

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Characters and Strings
•Characters: What they are. How to use them.

•Strings: What they are. How to use them.

Characters and Strings

Outline

 Characters

 What they are

 Math with characters.

ASCII

 Character output with

putchar()

 Character input with

getchar()

 Character functions from

the ctype.h library, e.g.:

 toupper()

 isspace(c)

 Strings

What they are

 Arrays of characters

 Terminated by a '\0'

 How to allocate space and

initialize them

 String functions from the

string.h library

Gotcha’s regarding strings

 Looping through strings,

mutating strings

Characters in Python

 Just a one-character string
>>> myChar = 'C'

>>> print myChar

C

>>> print ord(myChar) # converts character to int

67

>>> print chr(67) # converts int to character

C

Characters in C

 C's char type is really a kind of number!

 A char takes 1 byte (8 bits) of storage space

 Predict the output:

char myChar;

myChar = 'C';

printf("%c\n", myChar); // %c is format spec. for char

printf("%i\n", myChar);

printf("%c\n", 67);

myChar++;

printf("%c\n", myChar);

Q1

Today’s world requires more than 1 byte of space
to cover all the characters in all the world’s
languages. Hence there are provisions (that we
will not pursue) for extended-length characters.

Seven Ways to Say 'A'

printf("A");

printf("%c", 'A');

printf("%c", 'B'-1);

char a1 = 'A';

int a2 = 'A';

printf("%c %c", a1, a2);

putchar('A'); // can "push" single characters to console

putchar(toupper('a')); // Need to #include <ctype.h>

putchar(a1); putchar(a2);

printf("Eh!"); Q2

ASCII Table

ASCII is gradually giving way to
Unicode, which allows for larger
alphabets.

Note that the letters are “in
order”, although the lower case
follow the upper case with some
special characters in between.

Summary: Math with Characters

'C' + 1 == 'D' is true, so:

char b = 'b';

b--;

putchar(b); /* outputs 'a' */

 Combine these ideas to write a for loop that prints the

characters from 'a' to 'z' on a single line

 Try this in Eclipse; you may work with a neighbor

 Today’s project Session27_CharactersAndStrings

has a function called printAToZ ready for you to do this.

 TODO’s #2 and #3 in the project

Character Input

 To read a single character

from the console use:

getchar()

 Study the following code – we typed it for you into function

countInputUntilEndOfLine in today’s project
Session27_CharactersAndStrings. Then run it (TODO #4).

int inChar;

int count = 0;

printf("Type some text, then press 'Enter': ");

fflush(stdout);

inChar = getchar();

while (inChar != '\n') {

count++;

inChar = getchar();

}

printf("You entered %i characters.\n", count);

Note: most

operating systems

only pass characters

to your program

after the user

presses the enter

key

EOF is control-z in

Windows, control-d

in Linux

Q3

Caveat: getchar() returns an int (not a
char), either a character value or EOF
(end of file). Store its returned value in
an int, not a char. (Though char works on
some systems.)

Character Functions: ctype.h

 Conversion Functions:
 int tolower(int c);

 int toupper(int c);

 Test functions:
 isdigit(int c)

 isalpha(int c)

 islower(int c)

 isupper(int c)

 isspace(int c)

See the C Library Reference

link on the Course Resources

for more functions.

 Write a function called countSpaces to count the number of

non-white-space characters entered in a line of input

 We placed this function into today’s project: TODO’s #5 and 6.

 Use isspace

Returns true if c is a “white-space”
character – space, form feed, newline,
carriage return, tab, or vertical tab.

Strings

 A string in C is just:

 An array of characters

 With a '\0' at the end

 Examples:

 The printAString function in today’s project shows what can

go wrong if you forget the '\0' and/or don’t allocate enough

space for the string (including the '\0').

 Examine printAString, then run it (per TODO #7).

 Do you see how to correct the two errors in printAString?

char r[4];

r[0] = 'b';

r[1] = 'o';

r[2] = 'b';

r[3] = '\0';char r[] = "bob"; char r[4] = "bob";

Three ways to do the same thing. We
will shortly see a 4th way, using strcpy.

Q4-5

String variables vs. constants

 String Variable

char s[] = "cat";

 String Constant

char *t = "cat";

 Strings declared in this way

cannot be mutated!

t:

c a t \0s: c a t \0

String Functions: string.h
Function Purpose

char* strcpy(char *dest,

char *src)

Copy string src to string dest, including '\0';

return dest. Note: strings are mutable in C,

unlike Python! Must reserve space for dest

before calling strcpy.

char* strcat(char *dest,

char *src)
Concatenate string src to end of string dest;

return dest. Must reserve space for dest before

calling strcat.

int strcmp(char *str1,

char *str2)
Compare string str1 to string str2; return a

negative number if str1<str2, zero if str1==str2,

or positive otherwise. Use lexicographical –

alphabetic – ordering.

size_t strlen(char *str) Return length of str (size_t is a typedef for

int on most systems).

Doesn’t include the null character.

We usually ignore return values from strcpy

and strcat, since they mutate dest.

See Kochan or the C Library Reference link on Course Resources page for more info. The

string.h library is perhaps C’s weakest and most easily abused (insecure) library. For example,

there is no check that enough space is allocated or that the strings are null-terminated.

String Concatenation Using strcat()

 Consider:
char s1[] = "Go, Red! Go, White! ";

char s2[] = "Go Rose, Fight!";

/* You write code here */

printf("%s\n", s3);

 What goes in the middle? We want:

 the output to be

Go, Red! Go, White! Go Rose, Fight!

 and no additional string literals Q6

Summary: Strings in C

 Strings are arrays of characters:

char firstName[] = "Lou";

or

char lastName[10];

strcpy(lastName, "Gehrig");

 “Null terminated”, that is, a '\0' at the end

 Strings are (generally) mutable (since arrays are like pointers)

 Strings can be abused easily. Be careful to:

 Terminate the string with a '\0'.

 Reserve enough space to hold the string, including its '\0'.

 Use the string.h functions we listed with caution – if the

arguments are not what you expect, things can go quite bad.

Key

Points!

 Problem:

 Python includes high level functions for strings

 C (and some other languages) do not

 What if you need to use C, but also need strings?

 Solution: Make your own string functions!

 Rest of today:

 Finish the functions in today’s project:

Session27_CharactersAndStrings

 That is, do TODO’s 8 and following.

 Let’s start it together.

 Ask questions as needed!

 Don’t merely make the code “work”.

Make sure you understand the C notation and how to use it.

When C Gives You Lemons…

Q7

