
CSSE 120 – Introduction to Software Development Session 26

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: Session26_Arrays

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Arrays in C

• Review pointers as function parameters

• List in Python vs Array in C

• Arrays as function parameters

• Arrays and pointers

int b;

foo(&b);

void foo(int* a) {

 ...

 *a = 7;

}

Using pointers as parameters

Box and Pointer Diagrams

Send the address of b

Receive an address

Modify value at address

Now b has the value 7 that was established in foo!
This is useful for:

• sending data back from a function via the parameters, and for

• passing large amounts of data to a function.

Thus pointers in C give us the same advantages as references-to-objects in Python.

 ???

a b

 7

a b

From the last homework:

 swap: a function to exchange the values of two

variables

 Let's look at some possibly wrong approaches and

why they would not work

void swap1(int x, int y) {

 x = y;

 y = x;

}

void swap2(int x, int y) {

 int temp;

 temp = y;

 y = x;

 x = temp;

}

void swap3(int *x, int *y) {

 int *temp;

 temp = y;

 y = x;

 x = temp;

}
Q1

Arrays in C

 Arrays in C are like lists in Python

 But there are limitations on how they can be

mutated

An example using lists in Python

 Consider the following Python Code:
list = [1, “spam”, 4, “U”]

list.append(2)

list.remove(“U”)

length = len(list)

 What do these statements tell us about Python lists?

 Elements can be mutated

 Type does not matter

 Size is not specified

 Can be expanded or shrunk

 Lists remember their length

C arrays (next slide) share only
the first of these properties!

List in Python vs Array in C

 No built-in list type in C

 Array is closest data structure to list in Python

 Consider this C code

 int size = 4;

 int nums[size];

 int i;

 for (i = 0; i < size; i++) {

 nums[i] = i * i;

 }

 How is this similar to lists in Python?

 Different?

Q2-3

Initialization and access

 How do we initialize a list or array?

 Python list: a = [1, 3, 5]

 C array: int a[] = {1, 3, 5};

 How do we access an element?

 Python list: x = a[i]

 C array: x = a[i];

 How do we access the last element?

 Python list: x = a[-1]

 C array: x = a[size - 1]; // the array doesn’t

 know its size.

int main() {

 int size = 7;

 int a[size];

 initializeArray(a, size);

 return EXIT_SUCCESS;

}

void initializeArray(int a[], int size) {

 int k;

 for (k = 0; k < size; ++k) {

 a[k] = 100;

 }

}

Declare the array : type and size. Allocate

space, uninitialized. Size cannot change. Can
initialize elements with: int a[] = {…};

Pass the array to a function – just the

array name. Must also send size; no

len function.

Get an array as a parameter – array name plus empty

brackets. Must also send size; no len function.

Loop through array.

Reference array elements like

in Python – square brackets

with index, indices start at 0.

NO CHECK that references

stay within the array!

Quiz: Write countEvens

int countEvens(int nums[], int size) {

 // Returns the count of even numbers in the nums array.

 // TODO: complete this function…

 return count;

}

int main() {

 int SIZE = 7;

 int a[] = {16, 5, 23, 19, 42, 17, 12};

 int evens = countEvens(a, SIZE);

 printf("The number of even numbers is %i.\n", evens);

 return EXIT_SUCCESS;

} Q4

Working with arrays

1. Checkout the Session26_Arrays project from SVN

2. Do its TODO’s in the order listed.

 Exception: Don’t do printArrayWithPointers

(TODO’s 7 and 8) until we discuss pointer arithmetic.

Summary: You will see in doing the TODO’s that you write and
test functions that:
• Get input from the user and put the input into an array
• Print a portion (or all) of an array
• Return the number of even numbers in an array of integers.
• (Eventually) Print an array using pointer arithmetic.
Additionally, you will declare an array.

Arrays and Pointers

 In C there is a strong relationship between arrays

and pointers

 An array occupies a fixed location in memory

 Its address cannot be changed

 Any operation that can be achieved by indexing

(e.g., a[i]) can be done with pointers

 The pointer version will be

 a bit more challenging to implement at first

 but faster in some cases

How arrays and pointers relate

int a[10];

a[0] a[1] a[9]

a:

int a[10]; defines an array of size 10, i.e., a block of 10 consecutive integers named

a[0], a[1], …, a[9]. a is really the starting address of the array.

Each element in the array is accessed

using the notation a[i] where i is the index

of the ith element.

How arrays and pointers relate

int a[10];

int *pa;

pa = &a[0]; or

pa = a;

a[0] a[1] a[9]

a:

pa: pa += 1: pa += 4:

Pointer variable

that sits

somewhere in

memory

Make pa point

to (the first

element of) the

array

Make it point to

the next element

in the array

Make it point to

a[5]

Q5

Summary of arrays and pointers

 int *pa; declares a pointer to an integer

 Set pa to point to array a

 pa = &a[0]; or pa = a; (your choice)

 Refer to array elements (given above assignment)

 a[0] or *pa (your choice)

 Pointer arithmetic

 Can increment pointers, so the following are equivalent:

 pa = &a[0]; pa = &a[0];

 a[k] *(pa + k) pa = pa + k;

 *pa

Array notation vs. Pointer notation

void initializeArray(int a[], int size) {

 int k;

 for (k = 0; k < size; ++k) {

 a[k] = 100;

 }

}

void initializeArray(int *a, int size) {

 int *p;

 for (p = a; p < a + size; ++p) {

 *p = 100;

 }

}

Arrays as function parameters

 int [] and int * are equivalent, when used as formal

parameters in a function definition, e.g., …

 void f (int a[], int count) { …

 void f (int *a, int count) { …

 Note that in neither case can we know the size of

the array, unless it is passed in as a separate

parameter.

 In either case, the 6th element of a can be

equivalently accessed as

 a[5]

 *(a+5) // treating array a as a pointer

Q6

Using pointers with arrays

 How do we modify printArray() so that it uses

pointers instead of array indexing?

 Implement:
void printArrayThePointerWay(int *a, int size) {

 ...

}

Test the function by invoking it in main(), exactly like you

invoked the printArray function (except changing the

name, of course).

HW Warm-up: Thinking of a Sort

 Homework asks you to imagine you are a real

estate agent who is helping potential home buyers

to analyze the prices of homes in Vigo county.

 In order to analyze those prices you may need to

sort the prices.

 Given:
double ratings[] = {2.4, 5.0, 4.4, 3.2, 0.1};

 What would we do to sort ratings in ascending

order?

Selection Sort:

 Idea: Select the smallest and put it at the beginning of the array.

Then select the 2nd smallest and put it at index 1 of the array. Etc.

 Algorithm:

 for k from 0 to size – 2:

 j = index of smallest element in the array,

 starting at index k

 swap the array elements at indices j and k

 Back-of-the-envelope analysis: The k-loop goes about N times, where N is the

size of the array. Each time through that loop, it does roughly N/2 chunks of

work to find the index of the smallest remaining element. So the total work is

roughly proportional to N2. We write this as O(N2).

 Selection Sort is easy to understand and implement (good!). But it is MUCH

slower than better sorting algorithms on large arrays – See the table and

Wikipedia Sorting Algorithms

for over 30 other choices!

N (size of

array)

N2

(selection sort)

N log N

(better sorts)

1 thousand 1 second < 1 second

1 million 278 hours 10 seconds

1 billion 317 centuries 3 hours

This table assumes 106 chunks of

work per second and makes various

wrong assumptions, but it is fine for a

back-of-the-envelope comparison.

http://en.wikipedia.org/wiki/Sorting_algorithm

