
CSSE 120—Rose Hulman Institute of Technology

STRUCTS, TYPEDEF, #DEFINE,

AND USING C MODULES

Preamble: #define and typedef

 C allows us to define our own constants and type
names to help make code more readable

#define TERMS 3
#define FALL 0
#define WINTER 1
#define SPRING 2

typedef int coinValue;
coinValue quarter = 25, dime = 10;

How could we make our own boolean type?

Q1-Q3

For more info, see Kochan,

p. 299-303 (#define),

p. 325-327 (typedef)

Structures

 No objects or dictionaries in C. Structures (structs)
are the closest thing that C has to offer.

 Two ways of grouping data in C:

Array: group several data elements of the same type.

 Access individual elements by position : student[i]

 Similar to Python’s list, but more low-level

 Structure: group of related data

 Data in structure may be of different types

 Conceptually like dictionaries, syntax like objects

 Access individual elements by name: endPoint.x

 Not endPoint[―X‖]

Q4-Q6

Structure variable,

where the structure

has a field called x

 Declare the type:

typedef struct {

int year;

double gpa;

} Student;

 Make and print a student's info:

Student s;

s.gpa = 3.4;

s.year = 2010;

printf(“Year %d GPA %4.2f\n”, s.year, s.gpa);

Example: Student struct type

Q7

There are other ways to declare

structure types, but this is by far the

best way. Follow its notation carefully.

Note that it just declares the Student

type. It does NOT make a Student or

Student variable.

Declares s to be of type Student and

allocates space (an int and a double) for s.

Initializes the fields of s.

Accesses the fields of s. Note the dot notation for assignment and access.

Define a Point struct type together

 Make a new C Project called PointModule

 File ~ New ~ C Project, then choose Hello World ANSI C Project

 Expand the PointModule project and find the PointModule.c file

beneath the src folder. Rename this PointModule.c file to main.c

 (it will help avoid confusion later)

 Within main.c create a typedef for a Point structure

 After the #include’s, but before the definition of main

 Two fields, named x and y

 Make both x and y have type int

 Follow the pattern from the previous slide,

but do a Point structure (not a Student).

typedef struct {

int year;

double gpa;

} Student;

Declare, initialize and access a

Point variable

 In main:

 Delete the line the wizard included that prints ―Hello World‖

 Delete the void the wizard put in int main(void)

 Declare a variable of type Point

 Initialize its two fields to (say) 3 and 4

 Print its two fields

Follow the pattern we saw on a previous slide:

Student s;

s.gpa = 3.4;

s.year = 2010;

printf(“Year %d GPA %4.2f\n”, s.year, s.gpa);

That’s a struct

 That’s an easy introduction to using typedef with

struct

 Let’s make some fancier ways to initialize a struct

Three ways to initialize

a struct variable

Student juan;

juan.year = 2008;

juan.gpa = 3.2;

Student makeStudent(int year, double gpa) {

Student student;

student.year = year;

student.gpa = gpa;

return student;

}

Student juan = makeStudent(2008, 3.2);

Student juan = {2008, 3.2};

(Only allowed when declaring and initializing

variable together in a single statement. Not

recommended, since if the order of the

fields changes, this statement breaks.)

typedef struct {

int year;

double gpa;

} Student;
#1

#2

#3

Define a

function that

constructs a

Student and

returns it

Call the

constructor, in

main or

elsewhere

makePoint

Write a makePoint function:

 Point makePoint(int xx, int yy)

 It receives two int parameters and returns a Point

 Include a prototype for it, as usual

 From within the main function:

 Declare a Point called p2

 Call makePoint

 Store the result into p2

 Print the values of p2’s x and y

Follow the pattern

#3 from the previous

slide.

Solution (try it on your own first)

typedef struct {

int x;

int y;

} Point;

Point makePoint(int xx, int yy);

int main() {

Point p, p2;

p.x = 3;

p.y = 4;

printf(“%i %i\n”, p.x, p.y);

p2 = makePoint(8, 5);

printf(“%i %i\n”, p2.x, p2.y);

return EXIT_SUCCESS;

}

Point makePoint(int xx, int yy) {

Point result;

result.x = xx;

result.y = yy;

return result;

}

C Modules

 Grouping code into separate files for the purposes of

organization, reusability, and extensibility

 Header files

 .h file extension

 Other .c files will #include your header file

 For publicly available functions, types, #defines, etc.

 Source files

 .c file extension

 The actually C code implementations of functions, etc.

 Needs to #include .h files to use functions that are not

written in this file

Making Modules

 The .c and .h file with the same name are called

collectively a module

 Our example:

 PointOperations.c

 PointOperations.h

 Let’s create this module together in Eclipse

 Right-click src folder, then New  Header File

 Call the file PointOperations.h

 Right-click src folder, then New  Source file

 Call the file PointOperations.c

Move your code

 Publicly available content goes into .h files

 Private content and code implementations go into .c files

 Move into PointOperations.h

 The code that defines the Point structure

 The prototype for makePoint

 Put these (and all other code in the .h file)

between the #ifndef and #endif:

#ifndef POINTOPERATIONS_H_

#define POINTOPERATIONS_H_

YOUR STUFF HERE

#endif /* POINTOPERATIONS_H_ */

 Move into PointOperations.c

 The makePoint function definition
Q8-9

The compiler automatically

knows that the implementation

of the function is within the .c file

of this module.

Any .c file that has
#include“PointOperations.h”

can now call that function (it’s

publicly available).

Adding the wiring

 main.c and PointOperations.c need to know about

PointOperations.h

 Both need the Point structure definition

main needs the prototype for makePoint

 Add #include’s into both files, like this:

#include “PointOperations.h”

Note the double quotes, not angle brackets as we have been using.

Angle brackets tell the compiler to look in the place where system files

are kept. Double quotes tell the compiler to look in our project itself.

Summary – PointOperations.h

#ifndef POINTOPERATIONS_H_

#define POINTOPERATIONS_H_

typedef struct {

int x;

int y;

} Point;

Point makePoint(int xx, int yy);

#endif /* POINTOPERATIONS_H_ */

This “include guard”

ensures that the code

in this file is processed

only ONCE, even if

many .c files #include

it. Put an include

guard in all your .h

files, as a matter of

standard practice.

Summary – PointOperations.c

#include "PointOperations.h"

Point makePoint(int xx, int yy) {

Point result;

result.x = xx;

result.y = yy;

return result;

}

Summary – main.c

#include <stdio.h>

#include <stdlib.h>

#include "PointOperations.h"

int main() {

Point p, p2;

p.x = 3;

p.y = 4;

printf("%i %i\n", p.x, p.y);

}

p2 = makePoint(8, 5);

printf("%i %i\n", p2.x, p2.y);

return EXIT_SUCCESS;

Try it out

 Save all 3 files, build (Project  Build Project) and

run

 Works exactly like it did before but using modules!

 Refactoring code always feels a little odd

 So much effort for no visible difference

 A modular approach is much more extensible

 In software engineering, extensibility is a system design

principle where the implementation takes into consideration

future growth.

Extended in class example

 Next we’re going to do an extended example using

structures and modules

 If you get stuck during any part, RAISE YOUR HAND and get a TA

to help you stay caught up

 There will be a bunch of parts, so getting behind early works out

BADLY

 Make sure each works before moving on

 Raise your hand if you have trouble with weird build errors (it

happens!)

 In this example, you will implement a LineSegment structure

 Do the remaining quiz questions now
Q10-11

Structures1 – Geometry Operations

 Checkout the project

25-Structures1

 It does NOT compile yet (you’ll fix that shortly)

 Overview of this exercise:

 We give you main and a PointOperations module that can

do operations on points

 Similar to the one you just developed

 You develop a LineSegmentOperations module that can do

operations on line segments

 We’ll begin together (via the next several slides), then you

will do the remaining TODO’s at your own pace

Files

 Testing your modules code

 main.c

 Point Operations module

 PointOperations.h

 PointOperations.c

 Line Segment Operations module

 LineSegmentOperations.h

 LineSegmentOperations.c

Main

 Used to test your modules

 Things it already does

 Tests Point operations:

 Creates a Point

 Gets a Point from the console

 Prints the Points

 Call a distance function

 Prints the distance

 Things you’ll add

 Test code for LineSegment operations

 After you define a LineSegment structure and write functions that

operate on it

Two Modules

 Functions in the PointOperations module:
Point makePoint(int xx, int yy);

void printPoint(Point point);

double calculateDistance(Point pt1, Point pt2);

 Functions in the LineSegmentOperations module:

LineSegment makeLineSegment(Point pt1, Point pt2);

void printLineSegment(LineSegment line);

double calculateLength(LineSegment line);

Implement

LineSegmentOperations.h

 For this .h file, you need (as usual):

 Structure definitions relevant to functions of this module

 Prototypes of functions defined in this module

 #include statements as needed for the prototypes

 Do TODO’s #1, 2 and 3 in LineSegmentOperations.h:

// TODO #1: Put the typedef for a structure type called LineSegment

// TODO #2: Put prototypes for the three functions that you will implement.

// See their descriptions in the comment at the top of this file.

// TODO #3: Put the #include into this file that you need, as a result

// of the makeLineSegment function that you added a prototype for.

Fix the fields in

LineSegmentOperations.c

 Do TODO #4: In the printLineSegment function in

LineSegmentOperations.c, change the field names

to the names that YOU used in YOUR LineSegment

structure type.

Run the project

 Save, compile and run the project.

 It will tell you the distance between a point that you input

and (0, 0), but it gets the answer wrong (you’ll fix it)

 You enter your point’s coordinates as two numbers with a

comma in between, as suggested by the prompt

 If you have compile errors, something went wrong in the

preceding steps: be quick to get help as needed.

 If you have trouble running the code, try the usual tricks:

 Save the file (perhaps introducing a trivial change like a space first)

 Select the project and do Project  Build Project

 Sometimes a Project  Clean helps

 If you have a Release folder in your project, get help getting rid of it

 Then do the remaining TODO’s, in order.

TODO #5 – implement the

calculateDistance function

 Work through the TODO’s, in numbered order

 TODOs #1, then #2, etc

 The next slides offer help, but move ahead at your own pace

 For TODO #4 in pointOperations.c, notice that the ―stub‖ that we

supplied for calculateDistance always returns 0.0

 d = √ (x2-x1)
2 + (y2-y1)

2

 Remember math.h?

 For practice try to use pow (even though less efficient)

double pow(double x, double y);

// x raised to power y

From a list of C’s standard libraries at:

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html

TODO #6 & 7: Implement and test

makeLineSegment

 TODO #6: Implement makeLineSegment in

LineSegmentOperations.c

 TODO #7: Uncomment the lines in main that test

your makeLineSegment (and the existing

printLineSegment) functions.

 You will also need to add an appropriate #include,

since now main uses the LineSegment module.

 Run the code to see that it works correctly so far. Fix

errors as needed.

TODO #8 and 9: Implement and

test the calculateLength function

 TODO #8: Implement calculateLength in

LineSegmentOperations.c.

 IMPORTANT: Use calculateDistance from your PointOperations module!

 TODO #9: Uncomment the lines in main that test your

makeLineSegment (and the existing printLineSegment)

functions.

 Run the code to confirm that it works correctly. Fix errors as needed.

 That’s it for 25-Structures1 – good job!

 Rest of class: Checkout and begin working on

25-Structures2

 Read the description in homework25 before doing this exercise!

 Finish for homework

