As you arrive:

Start up your computer and plug it in

Log into Angel and go to CSSE 120

Do the Attendance Widget — the PIN is on the board
Go to the course Schedule Page

Open the Slides for today if you wish

Check out today’s project:

Plus in-class time
working on these
concepts AND

practicing previous
concepts, continued
as homework.

Pointers
* What they are. Why they are useful.

* Their notationinC: & * *

* Using pointers to get data back from a function. scanf as example.

* Next time: Using pointers to send a reference to lots of data to a

function

Today: Pointers

OU'I'Ilne What they are.
Why they are useful.

Their notation in C

Previously: C basics g * %
Functions and variables, Safiorers v [efireals —
with types deferencing
FOR and WHILE loops Using pointers to:
IF statements Mutate variables in the

Input, via scanf calling function

Get data back from a

Structures)
function

What they are scanf as an example

How to use them Send a reference to lots of

Header files data to a function (arrays —

next time)

Variables and parameter passing
in Python

Recall that in Python “everything is an object” and hence

all variable names are references to objects
Variables as sticky notes

They act like sticky notes >

When we pass a variable

to a function, we are passing a LN x=10

reference to an object. y y=x
X=x+1

This is efficient (fast) — we copy only the

reference, not all the data that is D x=x+ 1
Garbage collection of 11

referenced. For example, when we pass a

list, we pass a reference to the list, not all the data in the list.

If the object is mutable, we can mutate it in the function — this is convenient
and efficient. If the object is not mutable, we are assured that it is
unchanged when we return from the function — this makes it easier to write

correct code. So both mutable and immutable objects have their place.

Variables in C

-1 Variables are stored in memory

We call the place in memory

the variable’s address num:
int num; —> ege
num = 10; \) num:
10

1 C has several types of variables:
Integers — their bits are interpreted as a whole number

Doubles — their bits are interpreted as a floating point number

Pointers — their bits are interpreted as an address in memory
m As such, they are references to other data m

The three notations for pointers in C

num:
int num; memory: 222
num:
num = 4; memory: 4
pNum is a
pointer pNum: num:
to an int int *pNum; memory: 222 4
pNum is set to oNum: num:
the address pNum = # | memory: | ... 4
of num X
The thing at pNum: num:
: *pN = ; .
to 99 4

pointer pointee

deferences

Here’s Binky!

Ignore malloc in the video for now

Vocabulary
Pointee: the thing referenced by a pointer

Dereference: obtain the pointee

See http://cslibrary.stanford.edu/104/

What name did we give pointer “sharing” in
Python?

Answer: aliasing

http://cslibrary.stanford.edu/104/

Checkout today’s exercise: Session25-Cpointers
Then configure your debugger:

T — = o
o

|type filter text ‘ Default Launchers -y A
| General
Ant The settings on this page specify which launcher to use when multiple launchers are available for a
configuration and launch mode.
C/C++
Help Launch Typsideda_ Preferred Launcher:
From : Install/Update C/C++ Application GDB (DSF) Create Process Launcher
Java [Debug] GDB (DSE) Remote System Process Launcher
W- d o~ =a [€] C/C++Attach to Application ol |Standard Create Process Laum |
INAaow Run/Debug [Debug]
onsole €] C/C++ Postmortem Deb T —
++ Postmortem Debugger
Preferences - %
[Debug] h k h
External Tools C ec t e
. La -
Continues on Default Launche) indicated box
the next slide Launch Configui
Perspectives
String Substitution Launcher Description
View Management Start new application optionally under control of the standard debugger.
Tasks
Team
Usage Data Collector
Walidation
XML
" o 5 lRestore Defaults] l Apply]

@ | ok || cancel |

Continue to configure your debugger

N From: Window ~ Preferences
Continues on the next slide

| type filter text Debugger Types ol Ty
> General - .
! ol Active debugger types:
(2 c/ces gdb Debugger | SelectAll |
Appearance = gdbserver Debugger | Deselect All |
Build Console q gdb/mi (default) k
Build Variables] gdbserver Debugger Ma esure | Default |
»_Code Style MinGW gdb Debugger gdb/ml
4 Debug Cygwin gdb Debugger | .
Breakpoint Actions gdb/mi IS SeIeCted and
Common Source LookL
Debugger Types the de.fa“”t
GDB MI
» Editor
Environment
File Types —
< i | , Restore Defaults| | Apply |

@

OK

| Cancel |

Continue to configure your debugger

- DOZ <~ Propertie‘s for Session25_CPointers Eh
Project ~ CIean | | type filter text Run/Debugq Settings e
Ej;?;rrze This page allows you to manage launch configurations associated with
Then: i C/C++ Build the currently selected resource.
C/C++ General Launch configurations for "Session25_CPointers”
Right_click on E;C;jeﬁerﬁces C:@siun%_@ointers.aﬂ) { New... }
- Duplicate
Session25 4% Gt %
Task Tags
= S Delete
Cpointers vaigton Select
In Edit
Project Explorer then press OK
and select
Properties
Continues on the next |Restore Defaults || Apply |

slide

@ | ok || cancel |

Continue to configure your debugger

“select the Frr——— N —)

Arguments Edit launch configuration properties @ .
tab.
Name: [Gession25_CPointers.exe
SICTET ' Maifle: Arguments.). 78 Environment | % Debugger| % Source| " Refresh| = Common)|
Use default Program arguments:
ar;:rz\nagnge the C{wange the I{Vor.'king
Directory to: directory as indicated and i

c:/ then press OK as many
: times as necessary.

orking directory:
c/
Use default

Continues on the
next slide

Workspace... H File System... H Variables...

Apply Revert

Run your debugger

Run the program in the debugger. ﬁ: |

You may get error messages of the form “No such file or directory” but
as long as you get into the Debug mode, no problem.

If you see the dialog shown below, CHECK THE BOX and select Yes.

Single-step through the program in the debugger
to confirm that all is OK -

Switch back and forth between the Debug and
C/C++ perspeCﬁ\leS « Confirm Perspective Switch X

e g —
7 %% Debug [ERC; ”

- — —

f This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to support application debugging. It incorporates
views for displaying the debug stack, variables and breakpoint management.

Do you want to open this perspective now?

Whenever you leave

-
the Debug perspec’rive,(*’\ﬁemembermv@
be sure to stop the run |

Proof that pointers store addresses

Checkout today’s exercise:
Session25-CPointers

Do TODO 1 and TODO 2. As part of TODO 2,
answer the quiz questions.

When instructed to do so, run it in the debugger

Use the Debug view
It automatically inserts a breakpoint at the start of main

Single-step from there to answer the questions

You may get error messages of the form “No such file or
directory” but as long as you get into the Debug mode, no
problem.

|Qo-11 |

Box and pointer diagrams

-1 Together, let’'s draw a Box-and-Pointer diagram for
some of the variables in simplePointers.

Such diagrams help you understand pointers and are

critical for tracing-pointers-by-hand problems.

double change;
double *pChange;

change = 0.45;
pChange = &change;
*pChange = 0.62;

change

pChange‘

nnn 0645

i

222 ‘

UpAndDown, WRONG version

]
1 Do TODO 3 in the program.

1 Then do the quiz question (which asks you do draw a box-and-
pointer diagram to explain how the following code executes):

up| 5 takeMeHigher | -5 -

int up = 5;
int down = 10; 6
upAndDownWrong (up, down); | down| 10 putMeDown | -10-

void upAndDownWrong (int takeMeHigher, int putMeDown) ({
takeMeHigher = takeMeHigher + 1;

putMeDown = putMeDown - 1;
} Q13

Secret for making upAndDownRight

— pass a pointer to the function
Eal of this slide: Show how a function can mutate a pointee in C ‘

int b; [Send the address of b]
foo (&b) ; [Receive an address via a pointer J
a b
void foo(int *a) { > 222 7 |
*a = 7; /
} [Modify value at address, i.e., modify a’s pointee J

Now b hasthevalue 7 that was established in £oo!
This is useful for:
* sending data back from a function via the parameters, and for
e passing large amounts of data to a function.
Thus pointers in C give us the same advantages as references-to-objects in Python.

UpAndDown, A version that works

71 Do TODO 4, applying what you learned from the
previous slide.

1 When you are done, answer the quiz questions.

|Q14-15 |

To read input from user in C, use scanf ()
]

float x; In this use of scanf, user can enter the
double y; numbers separated by any whitespace
int z; (e.g. all on one line or on separate lines).

printf ("Enter two real numbers and an integer:");

fflush (stdout) ; &— £fflush: Pushes
prompt string to user
scanf ("$f %1f $d", &x, &y, &z); before asking for input.

printf ("Average: %5.2f\n", (x + y + z) / 3.0);

Note $1f in scanf for double’s. scanf has lots of options that are
Note &’s — see quiz question. powerful but perhaps confusing — see

pages 355-359 of Kochran if you
need more structured input, and
meanwhile stick to the above form,

compiler is better than most) but the program will .
o J
crash or simply give wrong results. with spaces between the %’s. I Q16 \

scanf is not resilient — if you misuse it, the
compiler will generally not complain (your

Summary: Why pointers are valuable

o If we pass pointers to a function:

The function can mutate the pointees.

m That is often convenient (although dangerous).

A return statement returns a single item.

With pointer parameters, we can send back as many items as we
have pointer parameters.

w For example: scanf can send back multiple values

® But: the single item in a return statement can be a structure instance,
which “bundles” multiple pieces of data and returns them

While less convenient in C, perhaps, this is often the best approach in many
languages.

The function can reference all data ““just after’”’ the pointer.

m So it can reference many items without copying them — arrays (next time)

Rest of today

7 Work through the remaining TODQO’s, as numbered.

1 Ask questions as needed!

Don’t merely make the code “work”. Make sure you
understand the C notation and how to use it.

01 Finish the exercises for homework
m Get help from the assistants in F-217, 7 to 11 p.m., as needed!

