
CSSE 120 – Introduction to Software Development Session 25

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: 25-CPointers

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Pointers

• What they are. Why they are useful.

• Their notation in C: & * *

• Using pointers to get data back from a function. scanf as example.

• Next time: Using pointers to send a reference to lots of data to a
function

Outline

 Previously: C basics

 Functions and variables,

with types

 FOR and WHILE loops

 IF statements

 Input, via scanf

 Structures

 What they are

 How to use them

 Header files

 Today: Pointers

 What they are.

Why they are useful.

 Their notation in C

 & * *

 Pointers vs Pointee’s –

deferencing

 Using pointers to:

 Mutate variables in the

calling function

 Get data back from a

function

 scanf as an example

 Send a reference to lots of

data to a function (arrays –

next time)

Variables and parameter passing

in Python

 Recall that in Python “everything is an object” and hence

all variable names are references to objects

 They act like sticky notes

 When we pass a variable

to a function, we are passing a

reference to an object.

 This is efficient (fast) – we copy only the

reference, not all the data that is

referenced. For example, when we pass a

list, we pass a reference to the list, not all the data in the list.

 If the object is mutable, we can mutate it in the function – this is convenient

and efficient. If the object is not mutable, we are assured that it is

unchanged when we return from the function – this makes it easier to write

correct code. So both mutable and immutable objects have their place.

Q1

Variables in C

 Variables are stored in memory

 We call the place in memory

the variable’s address

 int num;

 num = 10;

 C has several types of variables:

 Integers – their bits are interpreted as a whole number

 Doubles – their bits are interpreted as a floating point number

 …

 Pointers – their bits are interpreted as an address in memory

 As such, they are references to other data

10

num:

memory:

???

num:

memory:

Q2-4

4

num:

memory:

4

num: pNum:

memory: ???

4

num: pNum:

memory: …

99

num: pNum:

memory: …

int num;

num = 4;

int *pNum;

pNum = #

*pNum = 99;

pNum is a

pointer
to an int

pNum is set to

the address
of num

The thing at
pNum is set

to 99

???

num:

memory:

pNum is the pointer and num is the pointee.
*pNum deferences the pointer, which means that it obtains the pointee.

The three notations for pointers in C

Q5-8

Here’s Binky!

 Ignore malloc in the video for now

 Vocabulary

 Pointee: the thing referenced by a pointer

 Dereference: obtain the pointee

 See http://cslibrary.stanford.edu/104/

 What name did we give pointer “sharing” in

Python?

 Answer: aliasing

http://cslibrary.stanford.edu/104/

Checkout today’s exercise: Session25-Cpointers

Then configure your debugger:

From:

Window ~
Preferences

Continues on
the next slide

Check the
indicated box

Continue to configure your debugger
From: Window ~ Preferences

Continues on the next slide

Make sure
 gdb/mi
is selected and
the default

Continue to configure your debugger
Do:
Project ~ Clean

Then:

Right-click on
Session25_
Cpointers

in
Project Explorer

and select
 Properties

Continues on the next

slide

Select
 Edit
then press OK

Continue to configure your debugger

Select the

 Arguments
tab.

Uncheck

 Use default
and change the
Working
Directory to:

 C:/

Continues on the
next slide

Change the Working
directory as indicated and
then press OK as many
times as necessary.

Run your debugger

 Run the program in the debugger.

 You may get error messages of the form “No such file or directory” but

as long as you get into the Debug mode, no problem.

 If you see the dialog shown below, CHECK THE BOX and select Yes.

 Single-step through the program in the debugger

to confirm that all is OK

 Switch back and forth between the Debug and

C/C++ perspectives

 Whenever you leave

the Debug perspective,

be sure to stop the run

Proof that pointers store addresses

 Checkout today’s exercise:

 Session25-CPointers

 Do TODO 1 and TODO 2. As part of TODO 2,

answer the quiz questions.

 When instructed to do so, run it in the debugger

 Use the Debug view

 It automatically inserts a breakpoint at the start of main

 Single-step from there to answer the questions

 You may get error messages of the form “No such file or

directory” but as long as you get into the Debug mode, no

problem.

Q9-11

Box and pointer diagrams

 Together, let’s draw a Box-and-Pointer diagram for

some of the variables in simplePointers.

 Such diagrams help you understand pointers and are

critical for tracing-pointers-by-hand problems.

Q12

double change;

double *pChange;

change = 0.45;

pChange = &change;

*pChange = 0.62;

change ???

pChange ???

____ 0.45

0.62

UpAndDown, WRONG version

 Do TODO 3 in the program.

 Then do the quiz question (which asks you do draw a box-and-

pointer diagram to explain how the following code executes):

Q13

void upAndDownWrong(int takeMeHigher, int putMeDown) {

 takeMeHigher = takeMeHigher + 1;

 putMeDown = putMeDown – 1;

}

int up = 5;

int down = 10;

upAndDownWrong(up, down);

up 5

down 10

takeMeHigher 5

putMeDown 10

6

9

int b;

foo(&b);

void foo(int *a) {

 ...

 *a = 7;

}

Secret for making upAndDownRight

– pass a pointer to the function

Send the address of b

Receive an address via a pointer

Modify value at address, i.e., modify a’s pointee

Now b has the value 7 that was established in foo!
This is useful for:

• sending data back from a function via the parameters, and for
• passing large amounts of data to a function.

Thus pointers in C give us the same advantages as references-to-objects in Python.

 ???

a b

  7

Goal of this slide: Show how a function can mutate a pointee in C

UpAndDown, A version that works

 Do TODO 4, applying what you learned from the

previous slide.

 When you are done, answer the quiz questions.

Q14-15

To read input from user in C, use scanf()

 float x;
double y;

int z;

printf("Enter two real numbers and an integer:");

fflush(stdout);

scanf("%f %lf %d", &x, &y, &z);

printf("Average: %5.2f\n", (x + y + z) / 3.0);

fflush: Pushes

prompt string to user

before asking for input.

Note %lf in scanf for double’s.

Note &’s – see quiz question.

scanf is not resilient – if you misuse it, the

compiler will generally not complain (your

compiler is better than most) but the program will

crash or simply give wrong results.

In this use of scanf, user can enter the

numbers separated by any whitespace

(e.g. all on one line or on separate lines).

scanf has lots of options that are

powerful but perhaps confusing – see

pages 355-359 of Kochran if you

need more structured input, and

meanwhile stick to the above form,

with spaces between the %’s. Q16

Summary: Why pointers are valuable

 If we pass pointers to a function:

 The function can mutate the pointees.

 That is often convenient (although dangerous).

 A return statement returns a single item.

With pointer parameters, we can send back as many items as we

have pointer parameters.

 For example: scanf can send back multiple values

 But: the single item in a return statement can be a structure instance,

which “bundles” multiple pieces of data and returns them

 While less convenient in C, perhaps, this is often the best approach in many

languages.

 The function can reference all data “just after” the pointer.

 So it can reference many items without copying them – arrays (next time)

Rest of today

 Work through the remaining TODO’s, as numbered.

 Ask questions as needed!

 Don’t merely make the code “work”. Make sure you

understand the C notation and how to use it.

 Finish the exercises for homework

 Get help from the assistants in F-217, 7 to 11 p.m., as needed!

