
CSSE 120 – Introduction to Software Development Session 24

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today‟s project: Session24_Geometry

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Structures, Preamble

• Declaring structure types

• Using structure types

• Using typedef, #define

C Modules

• Defining and using header

files

• Function prototypes/signatures

• Multiple .c files

Preamble: #define and typedef

 C allows us to define our own constants and type
names to help make code more readable

 How could we make our own Boolean type? Answer:
 #define TRUE 1

 #define FALSE 0

 typedef int boolean;

 boolean done = FALSE;

#define TERMS 3
#define FALL 0
#define WINTER 1
#define SPRING 2

typedef int coinValue;
coinValue quarter = 25, dime = 10;

Q1-3

For more on these topics:

typedef: Kochan, p. 325-327, or
www.cprogramming.com/tutorial/typedef.html

#define: Kochan, p. 299-303, or
www.cprogramming.com/tutorial/cpreprocessor.html

http://www.cprogramming.com/tutorial/typedef.html
http://www.cprogramming.com/tutorial/cpreprocessor.html

Structures

 No objects or dictionaries in C. Structures (structs)
are the closest thing that C has to offer.

 Two ways of grouping data in C:

 Array: group several data elements of the same type.

 Access individual elements by position : student[i]

 Structure: group of related data

 Data in struct may be of different types

 Conceptually like dictionaries, syntax like objects

 Access individual elements by name: student.gpa

 Not student[“gpa”]
Structure variable,

where the structure

has a field called gpa
Q4-5

struct syntax

 struct <optional_tag_name> {

 <type_1> <fieldname_1> ;

 <type_2> <fieldname_2> ;

 . . .

 <type_n> <fieldname_n> ;

};

 This says that each variable of this struct type has

all these fields, with the specified types

 But structs are best declared in conjunction with

typedef, as on on next slide…

 Declare the type:

typedef struct {

 int year;

 double gpa;

} Student;

 Make and print a student's info:

Student s;

s.gpa = 3.4;

s.year = 2010;

printf("Year %d GPA %4.2f\n", s.year, s.gpa);

Example: Student struct type

There are other ways to declare

structure types, but this is by far the

best way. Follow its notation carefully.

Note that it just declares the Student

type. It does NOT make a Student or

Student variable.

Declares s to be of type Student and

allocates space (an int and a double) for s.

Initializes the fields of s.

Accesses the fields of s. Note the dot notation for assignment and access. Q6

Define a Point struct type together

 Make a new C Project called PointModule

 File ~ New ~ C Project, then choose Hello World ANSI C Project

 Expand the PointModule project and find the PointModule.c file

beneath the src folder. Rename this PointModule.c file to main.c

 (it will help avoid confusion later)

 Within main.c create a typedef for a Point structure

 After the #include’s, but before the definition of main

 Two fields, named x and y

 Make both x and y have type int

 Follow the pattern from the previous slide,

but do a Point structure (not a Student).

typedef struct {

 int year;

 double gpa;

} Student;

Declare, initialize and access a

Point variable

 In main:

 Delete the line the wizard included that prints “Hello World”

 Delete the void the wizard put in int main(void)

 Declare a variable of type Point

 Initialize its two fields to (say) 3 and 4

 Print its two fields

Follow the pattern we saw on a previous slide:

Student s;

s.gpa = 3.4;

s.year = 2010;

printf("Year %d GPA %4.2f\n", s.year, s.gpa);

That‟s a struct

 That‟s an easy introduction to using typedef with

struct

 Let‟s make some fancier ways to initialize a struct

Three ways to initialize

a struct variable

Student juan;

juan.year = 2008;

juan.gpa = 3.2;

Student makeStudent(int year, double gpa) {

 Student student;

 student.year = year;

 student.gpa = gpa;

 return student;

}

Student juan = makeStudent(2008, 3.2);

Student juan = {2008, 3.2};

(Only allowed when declaring and initializing

variable together in a single statement. Not

recommended, since if the order of the

fields changes, this statement breaks.)

typedef struct {

 int year;

 double gpa;

} Student;
#1

#2

#3

Define a

function that

constructs a

Student and

returns it

Call the

constructor, in

main or

elsewhere

makePoint

 Write a makePoint function:
 Point makePoint(int newX, int newY)

 It receives two int parameters and returns a Point

 From within the main function:
 Declare a Point called (say) myPoint2

 Call makePoint and store the result into myPoint2

 Print the values

of the returned

Point‟s two

fields (x and y)

Student makeStudent(int year, double gpa) {

 Student student;

 student.year = year;

 student.gpa = gpa;

 return student;

}

Student juan = makeStudent(2008, 3.2);

Follow the pattern

#3 from the previous

slide, repeated here

C Modules

 Grouping code into separate files for the purposes of

organization, reusability, and extensibility

 Header files

 .h file extension

 Typically, .c files will #include your header file

 For publicly available functions, types, #defines, etc.

 Source files

 .c file extension

 The actual C code implementations of functions, etc.

 Needs to #include .h files to use functions that are not

written in this file

Making Modules in C

 The .c and .h file with the same name are called

collectively a module

 Our example:

 PointOperations.c

 PointOperations.h

 Let‟s create this module together in Eclipse

 Right-click src folder, then New  Header File

 Call the file PointOperations.h

 Right-click src folder, then New  Source file

 Call the file PointOperations.c

Best if you choose
 Default C header template
instead of Default C++ …
Ditto for source file.

Move your code

 Publicly available content goes into .h files

 Private content and code implementations go into .c files

 So move

(cut and paste)

your stuff

per this picture

Q7-8

main

#ifndef POINTOPERATIONS_H_

#define POINTOPERATIONS_H

 Definition of the Point structure goes HERE

 Prototype of makePoint goes HERE

#endif /* POINTOPERATIONS_H_

pointOperations.h (that’s .h)

Definition of your makePoint function goes HERE

pointOperations.c (that’s .c)

The compiler automatically knows that the

implementation of the function is within the .c file of this

module. Any .c file that has
#include "PointOperations.h"

can now call that function – it‟s publicly available.

Adding the wiring

 main.c and PointOperations.c need to

know about PointOperations.h

 Both need the Point structure definition

 main needs the prototype for makePoint

 Add #include‟s into main.c and

PointOperations.c (near the top), like this:

 #include "PointOperations.h"

Note the double quotes, not angle brackets as we have been using.

Angle brackets tell the compiler to look in the place where system files are kept.

Double quotes tell the compiler to look in our project itself.

Summary – PointOperations.h

#ifndef POINTOPERATIONS_H_

#define POINTOPERATIONS_H_

typedef struct {

 int x;

 int y;

} Point;

Point makePoint(int xx, int yy);

#endif /* POINTOPERATIONS_H_ */

This “include guard”

ensures that the code

in this file is processed

only ONCE, even if

many .c files #include

it. Put an include

guard in all your .h

files, as a matter of

standard practice.

Summary – PointOperations.c

#include "PointOperations.h"

Point makePoint(int newX, int newY) {

 Point result;

 result.x = newX;

 result.y = newY;

 return result;

}

Summary – main.c

#include <stdio.h>

#include <stdlib.h>

#include "PointOperations.h"

int main(void) {

 Point myPoint = makePoint(3,5);

 printf("myPoint.x = %i myPoint.y = %i\n",

 myPoint.x,

 myPoint.y);

 return EXIT_SUCCESS;

}

Try it out

 Save all 3 files, build (Project  Build Project) and

run

 Ctrl Shift S, Ctrl B, Ctrl F11 (some keyboard short cuts)

 Works exactly like it did before but using modules!

 Refactoring code always feels a little odd

 So much effort for no visible difference

 A modular approach is much more extensible

 In software engineering, extensibility is a system design

principle where the implementation takes into consideration

future growth.

Extended in class example

 Next we‟re going to do an extented example using

structs, typedef, and modules

 If you get stuck during any part, RAISE YOUR HAND

and get a TA to help you stay caught up

 There will be a bunch of parts, so getting behind

early works out BADLY

 Make sure each works before moving on

 Raise your hand if you have trouble with weird

build errors (it happens!)

Geometry Operations

 To make sure everyone is together checkout the project

Session24_Geometry

 Look at the code and try running the program

 If at ANY point you get a „Binaries not found‟ error

 File ~ Save All [it will be grayed out if all is already saved]

 Project ~ Clean [cleans the project and rebuilds it]

 Examine your console window – if errors remain, fix them

 Run (Ctrl F11) to run code

The above is often helpful – do it whenever things seems perplexing. Fix errors

as you proceed, from the TOP of the file, and save/clean frequently if you have

lots of errors. Generally, write a bit, compile-and-run, and repeat.

The Goal

 Sit back and we‟ll talk about what this code WILL

do

 Look in the Tasks window for TODO instructions

 Close all your other projects so that their TODOs don‟t show up

 So close Session23_CForLoops

Files

 Testing your modules code

 main.c

 Point Operations module

 PointOperations.h

 PointOperations.c

 Line Segment Operations module

 LineSegmentOperations.h

 LineSegmentOperations.c

Main

 Used to test your modules

 Things it already does

 tests Point operations:

 Creates a Point (using makePoint)

 Gets a Point from the console (using getPointFromConsole)

 Prints the Points (using printPoint)

 Call a calculateDistance function and prints the returned distance

 Things you‟ll add

 Test code for LineSegment operations

 After you define a LineSegment structure and write functions that operate

on it

Two Modules

 Functions in the PointOperations module:
Point makePoint(int newX, int newY);

double calculateDistance(Point point1, Point point2);

void printPoint(Point point);

Point getPointFromConsole();

 Functions in the LineSegmentOperations module:

 LineSegment makeLineSegment(Point oneEndPoint,

 Point otherEndPoint);

 void printLineSegment(LineSegment line);

 double calculateLength(LineSegment line);

Implement

LineSegmentOperations.h
 For this .h file, you need (as usual):

 Structure definitions relevant to functions of this module

 Prototypes of functions defined in this module

 #include statements as needed for the prototypes

 Finish your quiz, then do the TODO‟s in Session24_Geometry project

 Do them in order: 0, 1, 2, …

 They are SCATTERED throughout the files. After TODO 0,

begin in LineSegmentOperations.h

Q9-10

File ~ Save All
Project ~ Clean
Examine your console window – if errors remain, fix them
Run (Ctrl F11) to run code

Often helpful! Fix errors as you proceed! Top to bottom of file.

