
C LANGUAGE

INTRODUCTION, PART 2

(INPUT VIA SCANF, WHILE

LOOPS)

POINTERS, PART 1

CSSE 120—Rose Hulman Institute of Technology

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void printRootTable(int n);

int main() {

printRootTable(10);

return EXIT_SUCCESS;

}

void printRootTable(int n) {

int k;

for (k = 1; k <= n; ++k) {

printf("%2d %7.3f\n",

k, sqrt(k));

}

}

Some ways in which C

differs from Python:

#include instead of import

Prototypes

Execution starts in main

Curly braces { } indicate start and end of

blocks, instead of using indentation.

Simple statements end in semicolon.

Every variable has its type declared when

the variable is first introduced. Return

type of functions is declared – void for

does not return a value.

for-loops: (init ; while <test> ;

update at end of each iteration)

printf – %d, %f, %c, %s … \n
double quotes for strings – “go fish”

single quotes for characters – „G‟

Recap: Comments in C

 Python comments begin with # and continue until the

end of the line

 C comments begin with /* and end with */.

 They can span any number of lines

 Some C compilers (including the one we are using)

also allow single-line comments that begin with //

Using if and else

 if m % 2 == 0:

print "even"

else:

print "odd"

 Python:

 Colons and indenting

 if (m % 2 == 0) {

printf("even");

} else {

printf("odd");

}

 C:

 Parentheses, braces

 C allows you to omit the

braces when the body is

a single statement, but

don’t (leads to errors)

else if

 if gpa > 2.0:

print "safe"

elif gpa >= 1.0:

print "trouble"

else:

print "sqrt club"

 Python:

 Colons and indenting

 elif

 if (gpa > 2.0) {

printf("safe\n");

} else if (gpa >= 1.0) {

printf("trouble\n");

} else {

printf("sqrt club");

}

 C:

 Parentheses, braces

 else if

 Nested if’s also allowed

(as in Python)

C does not have a Boolean type

 Instead:

 0 means False and

 any other number means True

 So if you want a function to return True or False,

instead have it return 0 (for False) or 1 (or any

other non-zero number) (for True)

Boolean operators in C

 Python uses the words and, or, not for

these Boolean operators. C uses symbols:

&& means ―and‖

|| means ―or‖

! means ―not‖

 Example uses:

if (! same(v1, v2)) {

...

}

if (a >= 3 && a <= 5) {

...

}

While loops

 How do you suppose the following Python code would be

written in C?

n = 10

while n >= 0:

n = n – 1

print n

 How do you break out

of a loop in Python?

 How do you suppose

you break out of a loop in C?

 Use break, same as Python

 Here’s the loop-and-a-half pattern in C

n = 10;

while (n >= 0) {

n = n – 1;

printf(“%d\n”, n);

}

while (1) {

...

if (...) {

break;

}

...

}

To read input from user in C, use scanf()

float x;

double y;

int z;

printf("Enter two real numbers and an integer:");

fflush(stdout);

scanf("%f %lf %d", &x, &y, &z);

printf("Average: %5.2f\n", (x + y + z)/3.0);

fflush: Pushes

prompt string to user

before asking for input.

Note %lf in scanf for double’s.

Note &’s – more on them soon.

scanf is not resilient – if you misuse it, the

compiler will generally not complain (your

compiler is better than most) but the program will

crash or simply give wrong results.

In this use of scanf, user can enter the

numbers separated by any whitespace

(e.g. all on one line or on separate lines).

scanf has lots of options that are

powerful but perhaps confusing – see

pages 355-359 of your text if you

need more structured input, and

meanwhile stick to the above form,

with spaces between the %’s.

Next 30 minutes

 Checkout 24-CWhileLoopsAndInput

 Work through the TODO’s, as numbered.

 Ask questions as needed!

 Don’t merely make the code ―work‖. Make sure you

understand the C notation and how to use it.

 Pay close attention to error messages – learn how to

decipher them.

 If you:

 finish early, return to your 23-CForLoops project and

continue your work in it.

 don’t finish in class, then finish the exercise for homework

Outline

 Last time: C basics

 Functions and variables, with types

 For loops

 If statements

 So far today:

 Input, via scanf

While loops

 Rest of today: Pointers

Variables and parameter passing

in Python

 Recall that in Python ―everything is an object‖ and hence

all variable names are references to objects

 They act like sticky notes

 When we pass a variable

to a function, we are passing a

reference to an object.

 This is efficient (fast) – we copy only the

reference, not all the data that is

referenced. For example, when we pass a

list, we pass a reference to the list, not all the data in the list.

 If the object is mutable, we can mutate it in the function – this is convenient

and efficient. If the object is not mutable, we are assured that it is

unchanged when we return from the function – this makes it easier to write

correct code. So both mutable and immutable objects have their place.

Variables in C

 Variables are stored in memory

 We call the place in memory

the variable’s address

int num;

num = 10;

 C has several types of variables:

 Integers – their bits are interpreted as a whole number

 Doubles – their bits are interpreted as a floating point number

 …

 Pointers – their bits are interpreted as an address in memory

 As such, they are references to other data

10

num:

memory:

???

num:

memory:

4

num:

memory:

4

num:pNum:

memory: ???

4

num:pNum:

memory: …

99

num:pNum:

memory: …

int num;

num = 4;

int* pNum;

pNum = #

*pNum = 99;

pNum is a

pointer to an

int

pNum is set to

the address

of num

The thing at

pNum is set

to 99

???

num:

memory:

pNum is the pointer and num is the pointee.

*pNum deferences the pointer, which means that it obtains the pointee.

The three notations for pointers in C

Here’s Binky!

 Ignore malloc in the video for now

 Vocabulary

 Pointee: the thing referenced by a pointer

 Dereference: obtain the pointee

 See http://cslibrary.stanford.edu/104/

 What name did we give pointer ―sharing‖ in

Python?

 Answer: aliasing

http://cslibrary.stanford.edu/104/

int b;

foo(&b);

void foo(int* a) {

...

*a = 7;

}

Using pointers as parameters

Box and Pointer Diagrams

Send the address of b

Receive an address

Modify value at address

Now b has the value 7 that was established in foo!

This is useful for:

• sending data back from a function via the parameters, and for

• passing large amounts of data to a function.

Thus pointers in C give us the same advantages as references-to-objects in Python.

???

a b

7

a b

Rest of today

 Checkout 24-CPointers

 Work through the TODO’s, as numbered.

We’ll do the first few together

 Ask questions as needed!

 Don’t merely make the code ―work‖. Make sure you

understand the C notation and how to use it.

 If you:

 finish early, return to your 24-CWhileLoopsAndInput or

your 23-CForLoops project and continue your work in it.

 don’t finish in class, then finish the exercises for homework

 Get help from the assistants in F-217 Sunday evening as needed!

