
CSSE 120 – Introduction to Software Development Session 23

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. NOT YET: check out today’s project: Session23_CForLoops

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

C Language Introduction
• Structure of a main file

• #include

• Prototypes

• Main

• Curly braces and semi-colons

• Comments

• Declaring variables

• Types

• Defining and calling functions

• Definite (FOR) loops

• printf

• IF statements

Lesson #1 learned from Exam 2

 Examples are good, but only if you understand the

example.

 In banking, line 16 was helpful:

 account['balance'] = initialBalance

 In chess, rookMove was NOT helpful if you did not

understand completely:

 what it was doing and how it did so

Bottom line: Use examples, yes! But study and

understand the example first.

Copy-and-paste-and-then-modify is a terrible technique!

Lesson #2 learned from Exam 2

 Before you begin ANY problem, figure out how to solve it in

English before you turn to Python

 Do a concrete example by hand.

 Introspect the by-hand work that you did to determine

whether you need:

 A loop

 If so, what loop pattern

 A loop within a loop

 Variables to capture values and compute with them

 Getting a value from a variable

 Setting a variable’s value

 IF statements

 Call functions to help the function you are writing

The C Programming Language

 Invented in 1972 by Dennis Ritchie at AT&T Bell Labs

 Has been the main development language for UNIX

operating systems and utilities for about 30 years

 Our Python interpreter was written in C

 Used for serious coding on just about every

development platform

 Especially used for embedded software systems

 Is usually compiled to native machine code

 Faster but less portable than Python or Java

 Compiled, not interpreted, so no interactive mode

Why C in CSSE 120?

 Practical

 Several upper-level courses in CSSE, ECE, ME, and Math

expect students to program in C

 None of these courses is a prerequisite for the others.

 So each instructor had a difficult choice:

 Teach students the basics of C, which may be redundant for

many of them who already know it, or

 Expect students to learn it on their own, which is difficult for

the other students

 But a brief C introduction here will make it easier for

you (and your instructor!) when you take those courses

Why C in CSSE 120?

 Pedagogical

 Comparing and contrasting two languages is a good

way to reinforce your programming knowledge

 Seeing programming at C's "lower-level" view than

Python's can help increase your understanding of what

really goes on in a program

 Many other programming languages (notably Java,

C++, and C#) derive much of their syntax and

semantics from C

 Learning those languages will be easier after you have

studied C

Some C Language trade-offs

 Programmer has more control, but fewer high-level

language features to use

 Strong typing makes it easier to catch programmer

errors, but there is the extra work of declaring

types of thing

 “Once an int, always an int”

 Lists and classes are not built-in, but arrays and

structs can be very efficient

 and a bit more challenging for the programmer

Parallel
examples
in Python
and C

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

 squareRootTable(20);

 return EXIT_SUCCESS;

}

void squareRootTable(int n) {

 int k;

 for (k = 1; k <= n; ++k) {

 printf("%3i %9.3f\n", k, sqrt(k));

 }

}

from math import sqrt

def squareRootTable(n):

 for k in range(1, n+1):

 print("{:3i} {:9.3f}"

 .format(k, sqrt(k)))

def main():

 squareRootTable(20)

if __name__ == '__main__':

 main()

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

 squareRootTable(20);

 return EXIT_SUCCESS;

}

void squareRootTable(int n) {

 int k;

 for (k = 1; k <= n; ++k) {

 printf("%3i %9.3f\n", k, sqrt(k));

 }

}

This and the following slides use

this example to show ten ways

that C differs from Python

How C differs

from Python, #1:

#include

instead of import

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

 squareRootTable(20);

 return EXIT_SUCCESS;

}

void squareRootTable(int n) {

 int k;

 for (k = 1; k <= n; ++k) {

 printf("%3i %9.3f\n", k, sqrt(k));

 }

}

How C differs from Python,

#2:

Functions (except main) should

have prototypes which specify

the form of the function

In the prototype
void squareRootTable(int n);

 doesn’t return anything

has a single parameter

that is an int (i.e. integer)

simple C

statements

end in a

semicolon

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

 squareRootTable(20);

 return EXIT_SUCCESS;

}

void squareRootTable(int n) {

 int k;

 for (k = 1; k <= n; ++k) {

 printf("%3i %9.3f\n", k, sqrt(k));

 }

}

How C differs from

Python, #3:

Execution starts at the

special function called

main. Every C

program has exactly

one main function.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

 squareRootTable(20);

 return EXIT_SUCCESS;

}

void squareRootTable(int n) {

 int k;

 for (k = 1; k <= n; ++k) {

 printf("%3i %9.3f\n", k, sqrt(k));

 }

}

How C differs from Python,

#4:

Bodies of functions, loops, if

clauses, etc., are not

delimited by indentation.

Instead, curly-braces begin

and end the body.

Note the style for where the

braces are placed. Use this

style.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

 squareRootTable(20);

 return EXIT_SUCCESS;

}

void squareRootTable(int n) {

 int k;

 for (k = 1; k <= n; ++k) {

 printf("%3i %9.3f\n", k, sqrt(k));

 }

}

How C differs from

Python, #5:

Simple C statements

end in a semicolon.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

 squareRootTable(20);

 return EXIT_SUCCESS;

}

void squareRootTable(int n) {

 int k;

 for (k = 1; k <= n; ++k) {

 printf("%3i %9.3f\n", k, sqrt(k));

 }

}

How C differs from Python,

#6:

All variables must have their

type declared at the point the

variable is introduced.

Parameters, local variables, and

return value from functions. Types

include:

 -- int for integers

 -- double and float for

floating point numbers

 -- char for characters

For return values from functions,

void means nothing is returned.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

 squareRootTable(20);

 return EXIT_SUCCESS;

}

void squareRootTable(int n) {

 int k;

 for (k = 1; k <= n; ++k) {

 printf("%3i %9.3f\n", k, sqrt(k));

 }

}

at end of each

iteration of the loop,

k increases by 1.
++k and k++ are

shorthand for
 k = k + 1

semicolons separate the 3 parts of a for loop

How C differs from Python, #7:

No lists or range expressions.

The for statement is more

primitive:

for (k = 1; k <= n; ++k)

k starts at 1

Parentheses, no colon at end

loop continues
while k <= n

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

 squareRootTable(20);

 return EXIT_SUCCESS;

}

void squareRootTable(int n) {

 int k;

 for (k = 1; k <= n; ++k) {

 printf("%3i %9.3f\n", k, sqrt(k));

 }

}

How C differs from Python, #8:

printf is similar but not identical to

one way of using Python’s print.
In the example:

 -- note parentheses, quotes, commas

 -- %3i means integer, using 3 spaces

 -- %9.3f means floating point, using 9

spaces, 3 spaces after the decimal point

(use just %f for floating point with default

number of decimals)

 -- %c for printing a character

 -- \n means newline

 -- double quotes for string literals

 -- single quotes for character literals,

e.g. 'R' for the R character

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

 squareRootTable(20);

 return EXIT_SUCCESS;

}

void squareRootTable(int n) {

 int k;

 for (k = 1; k <= n; ++k) {

 printf("%3i %9.3f\n", k, sqrt(k));

 }

}

How C differs from

Python, #9:

if statements have their

condition in parentheses,

e.g.

if (k <= n) {

 ...

}

0 means False in C.

non-0 means True in C.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

 squareRootTable(20);

 return EXIT_SUCCESS;

}

void squareRootTable(int n) {

 int k;

 for (k = 1; k <= n; ++k) {

 printf("%3i %9.3f\n", k, sqrt(k));

 }

}

How C differs from Python,

#10:

comments are different:

/*

 ... (multi-line

comment)

 */

// single line comment

Calling functions with parameters

that return values

 Just like in Python (almost)

 Consider the function:

 double convertCtoF(double celsius) {

 return 32.0 + 9.0 * celsius / 5.0;

 }

 How would we get result from a function

 in Python? fahrenheit = convertCtoF(20.0)

 In C? int fahrenheit;
 fahrenheit = convertCToF(20.0);

 What's different in C?

 Declare the type of fahr, use semicolons

Using C with Eclipse

You must use a different Eclipse workspace for your C

programs than the one you use for Python programs.

1. Using MyComputer, create a folder to use for your C projects

 Best place: Parallel to your Python Workspace. For many of

you, that is: My Documents/Courses/CSSE 120/C Workspace

2. In Eclipse:

a. File ~ Switch Workspace, then select Browse

b. Browse to the C Workspace folder you created. Click OK.

c. Eclipse will shut down and then re-open.

d. Window ~ Open Perspective, then Other, then C/C++

If you don’t have a C/C++ perspective, get help from your instructor.

You will have to
 Switch Workspace every time
you switch between C and Python

Using C with Eclipse (continued)

Once you are in Eclipse in the C/C++ perspective, set

your individual repository just as you did for Python:

1. Window ~ Show View, then Other,

 then SVN ~ SVN Repositories

2. In the SVN Repositories tab that appears at the bottom,

right-click and select New~ Repository Location

3. For the URL, enter

http://svn.cs.rose-hulman.edu/repos/csse120-201110-username

where you replace username with your own Kerberos username

4. Checkout your Session23-CForLoops project

5. Browse the code in the src folder

6. Run the project (use the Run button).

Rest of today

 Work through the TODO’s, as numbered.

 Ask questions as needed!

 Use this exercise to get comfortable with the basics

of C notation, and C in Eclipse. Pay attention to

what you are doing!

 Finish the exercise for homework

 Also: Have a standup meeting with your Team.

 Make sure everyone has LOTS to do for Thursday!

