As you arrive: Plus in-class time

Start up your computer and plug it in working on these
Log into Angel and go to CSSE 120 concepts AND

. practicing previous
Do the Attendance Widget — the PIN is on the board concepts, continued

Go to the course Schedule Page as homework.
Open the Slides for today if you wish

check out today’s project:

C Language Introduction * Declaring variables
* Structure of a main file * Types
* Hinclude * Defining and calling functions
* Prototypes * Definite (FOR) loops
* Main :
* printf
* Curly braces and semi-colons
* |[F statements
* Comments

Lesson #1 learned from Exam 2

Examples are good, but only if you understand the
example.

In banking, line 16 was helpful:

account|['balance'] = initialBalance

In chess, rookMove was NOT helpful if you did not
understand completely:

what it was doing and how it did so

Bottom line: Use examples, yes! But study and
understand the example first.

Copy-and-paste-and-then-modify is a terrible technique!

Lesson #2 learned from Exam 2

Before you begin ANY problem, figure out how to solve it in
English before you turn to Python

Do a concrete example by hand.
Introspect the by-hand work that you did to determine
whether you need:
A loop
If so, what loop pattern
A loop within a loop
Variables to capture values and compute with them
Getting a value from a variable
Setting a variable’s value
IF statements

Call functions to help the function you are writing

The C Programming Language

Invented in 1972 by Dennis Ritchie at AT&T Bell Labs

Has been the main development language for UNIX
operating systems and utilities for about 30 years

Our Python interpreter was written in C

Used for serious coding on just about every
development platform

Especially used for embedded software systems
Is usually compiled to native machine code
Faster but less portable than Python or Java

Compiled, not interpreted, so no interactive mode

Why C in CSSE 1202

Practical

Several upper-level courses in CSSE, ECE, ME, and Math
expect students to program in C

None of these courses is a prerequisite for the others.

So each instructor had a difficult choice:

Teach students the basics of C, which may be redundant for
many of them who already know it, or

Expect students to learn it on their own, which is difficult for
the other students

But a brief C introduction here will make it easier for
you (and your instructor!) when you take those courses

Why C in CSSE 1202

Pedagogical

Comparing and contrasting two languages is a good
way to reinforce your programming knowledge

Seeing programming at C's "lower-level” view than
Python's can help increase your understanding of what
really goes on in a program

Many other programming languages (notably Javaq,
C++, and C#) derive much of their syntax and
semantics from C

Learning those languages will be easier after you have
studied C

Some C Language trade-offs

Programmer has more control, but fewer high-level
language features to use
Strong typing makes it easier to catch programmer
errors, but there is the extra work of declaring
types of thing

“Once an int, always an int”
Lists and classes are not built-in, but arrays and
structs can be very efficient

and a bit more challenging for the programmer

#include <stdio.h>

from math import sqrt

def squareRootTable (n):

' +1) :
$include <stdlib.h> for kK .mtringi(,l' n ;) L
#include <math.h> REESAE (B 850y 8 S0
.format (k, sqgrt(k)))
void squareRootTable (int n) ; i
def main() :
Yt mesa () squareRootTable (20)
squareRootTable (20) ; " ' , '
return EXIT SUCCESS; e S
| - main ()
void squareRootTable (int n) {
int k; Parallel
examples
for (k = 1; k <= n; ++k) { o P]
printf("%3i %9.3f\n", k, sqrt(k)):; 18 P)’f on

and C

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

This and the following slides use
this example to show ten ways
that C differs from Python

void squareRootTable (int n);

How C differs
int main() {

squareRootTable (20) ; from Py’rhon, H1:
return EXIT SUCCESS;

#include

void squareRootTable (int n) { instead of impori'
int k;

for (k = 1; k <= n; ++k) {
printf ("%$3i £9.3f\n", k, sqrt(k));

#include <stdio.h>
#include <stdlib.h> How C differs from Python,

#include <math.h> ‘(////” H2.

Functions (except main) should
void squareRootTable (int n) ;

have prototypes which specify

int main() { the form of the function

squareRootTable (20) ;

return EXIT SUCCESS; In the prototype

} void squareRootTable (int n) ;

void squareRootTable (int n) { ‘T

int k; doesn’t return anythin :
| AL simple C
statements
for (k = 1; k <= n; ++k) { end in a
printf("%3i %9.3f\n", k, sqrt(k)); semicolon

has a single parameter
that is an int (i.e. integer)

#include <stdio.h>
#include <stdlib.h>

#include <math.h> How C differs from
Python, #3:

void squareRootTable (int n);

/

int main() {
squareRootTable (20) ;

return EXIT SUCCESS;
} main. Every C

Execution starts at the
special function called

program has exactly
void squareRootTable (int n) {

int k;

one main function.

for (k = 1; k <= n; ++k) {
printf ("%$3i £9.3f\n", k, sqrt(k));

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void squareRootTable (int n);

int main() { &
squareRootTable (20) ;

return EXIT_SUCCESS;

N

void squareRootTable (int n) {
int k;

}

for (k = 1; k <= n; ++k) {
printf ("%$31i

How C differs from Python,
H4:

Bodies of functions, loops, if
clauses, etc., are not
delimited by indentation.
Instead, curly-braces begin
and end the body.

Note the style for where the
braces are placed. Use this
style.

$9.3£f\n", k, sqrt(k));

#include <stdio.h>
#include <stdlib.h>

#include <math.h>

How C differs from

void squareRootTable (int n) ; Py’rhon #5
, [)
int main() { ‘?____,—
squareRootTable (20) ; Simple C statements
return EXIT SUCCESS; end in a semicolon.

void squareRootTable (int n) {
int k;

for (k = 1; k <= n; ++k) {
printf ("%$3i £9.3f\n", k, sqrt(k));

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void squareRootTable (int n);

int main() {

squareRootTable (20) ;
return EXIT SUCCESS;

void squareRootTable (int n) {

int k;

<€

for (k = 1; k <= n; ++k) {

printf ("%$31i

%$9.3f\n",

How C differs from Python,
#H6:

All variables must have their
type declared at the point the
variable is introduced.

Parameters, local variables, and
return value from functions. Types
include:

-- int for integers

-- double and float for
floating point numbers

-- char for characters
For return values from functions,
voild means nothing is returned.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void squareRootTable (int n);

int main() {
squareRootTable (20) ;
return EXIT SUCCESS;

How C differs from Python, #7:
No lists or range expressions.
The for statement is more
primitive:

Parentheses, no colon at end

4 N\

for (k = 1; k <= n; ++k)

void squareRootTable (int n) {
int k;

for (k = 1; k <= n; ++k) {
printf ("$3i %9.3f\n",

L L ies
loop continues

k starts at 1 while k <= n

1

at end of each

k, sqgrt(k)); iteration of the loop,
kK increases by 1.
++k and k++ are

} semicolons separate the 3 parts of a for loop shorthand for

k=k +1

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void squareRootTable (int n);

int main() {

squareRootTable (20) ;
return EXIT SUCCESS;

void squareRootTable (int n) {

int k;

for (k = 1; k <= n; ++k)

printf ("%$31i

How C differs from Python, #8:
printf is similar but not identical to

one way of using Python’s print.
In the example:

-- note parentheses, quotes, commas

-- %3i means integer, using 3 spaces

-- %9.3f means floating point, using 9
spaces, 3 spaces after the decimal point
(use just %f for floating point with default
number of decimals)

-- %c for printing a character

-- \n means newline

-- double quotes for string literals

-- single quotes for character literals,
e.g. 'R' forthe R character

%$9.3f\n",

k, sqrt(k));

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void squareRootTable (int n);

int main() {

squareRootTable (20) ;
return EXIT SUCCESS;

void squareRootTable (int n) {

int k;

for (k = 1; k <= n; ++k) {

printf ("%$31i

%$9.3f\n", k,

How C differs from
Python, #9:

if statements have their
condition in parentheses,

e.g. /\
if (k <= n) {

0O means False in C.

non-0 means True in C.

#include <stdio.h>

. . How C differs from Python,
#include <stdlib.h>

#include <math.h> #] O:
void squareRootTable (int n) ; comments are different:
int main() { /*

squareRootTable (20) ;

(multi-line
comment)

*/

return EXIT_SUCCESS;

void squareRootTable (int n) {
int k;

// single line comment

for (k = 1; k <= n; ++k) {
printf ("%$3i £9.3f\n", k, sqrt(k));

Calling functions with parameters

that return values
—

7 Just like in Python (almost)

1 Consider the function:
double convertCtoF (double celsius) {

return 32.0 + 9.0 * celsius / 5.0;
}

7 How would we get result from a function
in Python? fahrenheit = convertCtoF (20.0)

In C¢ int fahrenheit;
fahrenheit = convertCToF (20.0) ;

7 What's different in C2

Declare the type of £ahr, use semicolons

You will have to

USing C Wi'l'h EC“pSe Switch Workspace every time

you switch between C and Python

You must use a different Eclipse workspace for your C
programs than the one you use for Python programs.

Using MyComputer, create a folder to use for your C projects

Best place: Parallel to your Python Workspace. For many of
you, that is: My Documents/Courses/CSSE 120/C Workspace

In Eclipse:
File ~ Switch Workspace, then select Browse
Browse to the C Workspace folder you created. Click OK.
Eclipse will shut down and then re-open.

Window ~ Open Perspective, then Other, then C/C++
If you don’t have a C/C++ perspective, get help from your instructor.

Using C with Eclipse (continued)

Once you are in Eclipse in the C/C++ perspective, set
your individual repository just as you did for Python:
Window ~ Show View, then Other,
then SYN ~ SVN Repositories

In the SVN Repositories tab that appears at the bottom,
right-click and select New~ Repository Location

For the URL, enter

http://svn.cs.rose-hulman.edu/repos/cssel20-201110-username

where you replace username with your own Kerberos username
Checkout your Session23-CForLoops project
Browse the code in the src folder ﬁ

Run the project (use the Run button).

Rest of today

Work through the TODQO’s, as numbered.
Ask questions as needed!

Use this exercise to get comfortable with the basics
of C notation, and C in Eclipse. Pay attention to
what you are doing!

Finish the exercise for homework

Also: Have a standup meeting with your Team.

Make sure everyone has LOTS to do for Thursday!

