
CSSE 120 – Fundamentals of Software Development Session 13

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: Session13_LoopPatterns

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Loop Patterns

• For loop pattern

• While loop patterns

• Loop-and-a-half loop pattern

• File loop pattern

Practice:
with loop patterns

Checkout today’s project: Session13_LoopPatterns

Are you in the Pydev perspective? If not:

• Window ~ Open Perspective ~ Other

then Pydev

Messed up views? If so:

• Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

• Window ~ Show View ~ Other

then SVN ~ SVN Repositories

In your SVN repositories view (tab), expand your
repository (the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong
Workspace. Get help as needed.

Right-click on today’s project, then select Checkout.
Press OK as needed.

The project shows up in the
 Pydev Package Explorer
to the right. Expand and browse the modules under
src as desired.

Troubles getting
today’s project?
 If so: 

Recap: Two main types of loops

 Definite Loop

 The program knows before the loop starts how many times

the loop body will execute

 Implemented in Python as a for loop. Typical patterns include:

 • Counting loop, perhaps in the Accumulation Loop pattern

 • Loop through a sequence directly

 • Loop through a sequence using indices

 Cannot be an infinite loop

 Indefinite loop

 The body executes as long as some condition is True

 Implemented in Python as a while statement

 Can be an infinite loop if the condition never becomes False

 Python's for line in file: construct

Indefinite loop that looks syntactically like a definite loop!

Recap:

Definite Loops

 Definite loop

The program knows

before the loop starts

how many times the loop

body will execute

 Counted loop

Special case of definite loop

where the sequence can be

generated by range()

 Implemented in Python as

a for loop

 Example to the right shows

3 typical patterns

Examples of definite loops :

• All three of these examples illustrate the
Accumulation Loop pattern

• The first example is a counted loop

• The second and third examples are equivalent
ways to loop through a sequence

 Second example is NOT a counted loop

 Third example IS a counted loop

sum = 0

for k in range(10):

 sum = sum + (k ** 3)

sum = 0

for number in listOfNumbers:

 sum = sum + number

sum = 0

for k in range(len(listOfNumbers)):

 sum = sum + listOfNumbers[k]

Recap: Indefinite Loops

 Number of iterations is not known when loop starts

 Is typically a conditional loop

 Keeps iterating as long as a certain condition remains True

 The conditions are Boolean expressions

 Typically implemented using a while statement

sum = 0

k = 0

while k < 10:

 sum = sum + (k ** 3)

 k = k + 1

sum = 0

for k in range(10):

 sum = sum + (k ** 3)

Indefinite loop that computes the same sum as the definite loop

Definite loop

Outline of Loop Patterns

 The compute-in-a-loop pattern

 Six basic compute-in-a-loop patterns:

 For loop

 While loop

 Interactive loop

 Sentinel loop using a special value as the sentinel

 Sentinel loop using no-input as the sentinel

 Loop-and-a-half

 Combined with use of no-input as the sentinel

 File loop

 Nested loops (next session)

 Wait-for-event loop (next session) Q1

Loop patterns

 We have seen the input-compute-output pattern:

 A cousin that pattern is the compute-in-a-loop pattern:

Input from the user or
as a parameter

Or return the result

get data

compute using the data

print the result

We’ve seen a special case of this
pattern: the Accumulator Loop
pattern. Today we will examine
other special cases.

pre-loop computation

repeatedly:

 get data

 compute using the data

post-loop computation

Six basic compute-in-a-loop patterns

pre-loop computation

for [amount of data] :

 get data

 compute using the data

post-loop computation

pre-loop computation

while [there is more data]:

 get data

 compute using the data

post-loop computation

pre-loop computation

while True:

 get data

 if data signals end-of-data:

 break

 compute using the data

post-loop computation

pre-loop computation

for line in file:

 get data from line

 compute using the data

post-loop computation

For loop While loop

Loop and a Half File loop

Nested loops Wait-for-event loop Next time

 Open the

 module1_averageUserCount.py

module and execute it together

 When does the loop terminate?

 Is this the best way to make the user enter input?

 Why?

 Why not?

For loop pattern
pre-loop computation

for [amount of data] :

 get data

 compute using the data

post-loop computation

This approach is a lousy way to get numbers
that the user supplies, because:

The user has to count in advance how many
numbers they will supply.

While loop pattern #1

 One version: an

interactive loop

pre-loop computation

while [there is more data]:

 get data

 compute using the data

post-loop computation

set a flag indicating that there is data

other pre-loop computation

while [there is more data]:

 get data

 compute using the data

 ask the user if there is more data

post-loop computation

Q2

This approach is also a lousy way to get
numbers that the user supplies, because:

The user has to answer repeatedly the “more
numbers?” question.

Examine and run the
module2_averageMoreData.py

module in the project you
checked out today.

While loop pattern #2

 Better version:

use a sentinel

pre-loop computation

while [there is more data]:

 get data

 compute using the data

post-loop computation

get data

other pre-loop computation

while [data does not signal end-of-data]:

 compute using the data

 get data

post-loop computation

Q3

Examine and run the
module3_averageSentinel.py

module in the project you
checked out today.

This approach (using negative numbers as the
sentinel) has a flaw. What is that flaw?

Answer: You cannot have negative numbers
included in the average!

User signals end of data by a
special “sentinel” value.

Note that the sentinel value
is not used in calculations.

While loop pattern #3

 Best (?) version:

use no-input as the sentinel

 Examine and run the
module4_averageOtherSentinel.py
module in the project you checked

out today.

pre-loop computation

while [there is more data]:

 get data

 compute using the data

post-loop computation

get data as a string

other pre-loop computation

while [data is not the empty string]:

 data = float(data)

 compute using the data

 get data as a string

post-loop computation

User signals end of data by
pressing the Enter key in

response to a input.

The sentinel value is again not
used in calculations.

Above converts the data to a float, but other
problems might do other conversions.

Loop-and-a-half

pattern

 Use a break

Examine and run the
module5_averageLoopAndAHalf.py module

in the project you checked out today.

pre-loop computation

while True:

 get data as a string

 if data == "":

 break

 data = eval(data)

 compute using the data

post-loop computation

Here we continue to use no-input as
the sentinel.

The break command exits the
enclosing loop.

This pattern is equivalent to the pattern on the
preceding slide. Some prefer one style; others prefer
the other. You may use whichever you choose.

pre-loop computation

while True:

 get data

 if data signals end-of-data:

 break

 compute using the data

post-loop computation

Q4

Escaping from a loop

 break statement ends the loop immediately

 Does not execute any remaining statements in loop body

 continue statement skips the rest of this iteration of

the loop body

 Immediately begins the next iteration (if there is one)

 return statement ends loop and function call

 May be used with an expression

 within body of a function that returns a value

 Or without an expression

 within body of a function that just does something

Q5-6

File loop pattern
pre-loop computation

for line in file:

 get data from line

 compute using the data

post-loop computation

This loop looks like a definite loop but isn’t:
it starts reading lines in the file without knowing how many
lines it will read before it reaches the end of the file.

Examine and run the
module6_averageFile.py

 module in the project you
checked out today.

pre-loop computation

Open file save as fileObject

for line in fileObject:

 process line, which is data

 as a string

 compute using the data

Close file

post-loop computation

Q7

Summary of Loop Patterns

 The compute-in-a-loop pattern

 Six basic compute-in-a-loop patterns:

 For loop

 While loop

 Interactive loop

 Sentinel loop using a special value as the sentinel

 Sentinel loop using no-input as the sentinel

 Loop-and-a-half

 Combined with use of no-input as the sentinel

 File loop

 Nested loops (next session)

 Wait-for-event loop (next session)

Exercise on Loop

Patterns – Clicks Game

 In module7_clickInsideCircle.py

you will implement this game:

 The computer shows a circle

that jumps around in a window.

 The user chooses how many seconds

between jumps and how big the circle is,

which correspond to the game’s difficulty.

 The user tries to click inside the moving circle.

 As long as the user misses, the computer

displays “XX misses” in the window,

where XX is the number of failed clicks so far.

 When the user finally clicks inside the circle, the computer displays “BULLSEYE

after XX misses”, where XX is the number of failed clicks.

What loop pattern seems best
for this problem?

Answer: The sentinel pattern,
where the sentinel is any point
that is inside the circle.

Use classic or loop-and-a-half.

Next: Make main play the game until the user says to stop? What loop pattern for this?

Answer: Again the sentinel pattern. What is the sentinel now?
Answer: However the user indicates “stop the game.” Here that means any point near the top-left corner of the window.

Exercise on Loop Patterns – Largest Number

in a List of Numbers: getList()

 Implement function getList() in module

module8_listMax.py that:

 Prompts the user to enter numbers,

one at a time

 Uses a blank line (<ENTER>)

as sentinel to terminate input

 Accumulates the numbers in a list

 Returns the list of numbers

 Implement the portion of

function main() that:

 Tests the above function,

by printing the list of numbers entered Q8, turn in quiz

What loop pattern seems best

for this problem?

Answer: The sentinel pattern,

where the sentinel is an input

that is the empty string.

You may use either the classic

sentinel approach or the loop-

and-a-half version of it. Which

seems more elegant to you?

Exercise on Loop Patterns – Largest Number

in a List of Numbers: maxList()

 Implement function maxList() in module

module8_listMax.py that:

 Takes a list of numbers

 Returns the maximum (largest)

number in the list

 Implement the portion of

function main() that:

 Tests the above function,

by getting a list from the

getList() function and printing

the maximum (largest) number in the list

by calling maxList()

What loop pattern seems best

for this problem?

Answer: Either of the two FOR

loop patterns for looping

through a sequence.

Start homework

 When you are through with your individual exercise

commit your solutions to your SVN repository

 Start working on homework 13

