
DECISION STRUCTURES,

COMPUTING WITH BOOLEANS

CSSE 120 – Rose-Hulman Institute of Technology

Sit with a robot partner

• Same partner or a new one, your choice – you will

complete the robot exercise in class

Checkout

Session10-Conditionals

from your repository

Exam 1

 Thursday evening, 7 to 9 p.m.

 But you may stay until 10 p.m. if you wish

 Section 1: Olin 257 Section 2: Olin 259

 No class Thursday morning

 Optional review session: Wednesday, 7 p.m. to 8:30 p.m.

 in Moench F-217 (CSSE lab)

 Also, I will be in my office Thursday morning 1st through 4th periods

 Best way to start preparing:

 Review the Exam 1 topics (see document on course web site)

Q1

Decision, Decisions

 Normally, statements in a program execute in order,

one after the other

 Sometimes we want to alter the sequential flow of a

program

What examples have we seen of this?

 Statements that alter the flow are called

control structures

 Decision structures are control structures that allow

programs to ―choose‖ between different sequences

of instructions

Simple Decisions

 The if statement

 if <condition>:

<body>

 Semantics:

"if the condition is True, run the body, otherwise skip it―

 Example:

if x < 0:

x = -x

 Simple conditions

 <expr> <relop> <expr>

 Some relational operators:

Math < ≤ = ≥ > ≠

Python < <= == >= > != Q2

Note! Why not a

single equal sign?

Class Exercise

 Checkout the Session10-Conditionals project from

your SVN repository

 Do the first two TODO’s (#0 and #1) in the grade.py

module:

 Your name

 Implement the grade1 function

 Return 'just barely' if the given score is 60,

else do nothing (and don't return anything).

The output should be:

Grade1: If the score is 60, then the grade is just barely

Grade1: If the score is 61, then the grade is None

Grade1: If the score is 59, then the grade is None

More on Comparisons

 Conditions are Boolean

expressions

 They evaluate to True or

False

 Try in IDLE’s Python shell:

3 < 4

42 > 7 ** 2

"ni" == "Ni"

"A" < "B"

"a" < "B“ George Boole

Q3

Boolean Variables and Operations

 Boolean constants: True, False

 Relational operators (<, etc.) produce

Boolean values.

 Other Boolean operators:

and, or, not

 What does this evaluate to: not((1 < 1) or (3 == 3))

 Do TODO #2 in grade.py:

 Implement grade2, which returns ‘is a C’ or nothing.
Q4

Having It Both Ways: if-else

 Syntax: if <condition>:

<statementsForTrue>

else:

<statementsForFalse>

 Semantics: ―If the condition is true, execute the statementsForTrue,

otherwise execute the statementsForFalse”

 Example:

if (x >= 60):

return ‘passing’

else:

return ‘failing’

 Do TODO #3 in grade.py:

 Implement grade3 which returns ‘perfect’ or ‘not perfect’.
Note: You can do grade3 without an else, because of return’s,

but it is clearer with one.
Q5-6

Tip: Use else whenever it

makes sense, because:

• Faster (don’t have to

repeat the test)

• Clearer

A Mess of Nests

 Can we

modify the

grade

function to

return letter

grades—

A, B, C, D,

and F?

def gradeNesting(score):

if score >= 90:

result = "A"

else:

if score >= 80:

result = "B"

else:

if score >= 70:

result = "C"

else:

if score >= 60:

result = "D"

else:

result = "F"

return result

Multi-way Decisions

 Syntax:
if <condition1>:

<case 1 statements>

elif <condition2>:

<case 2 statements>

elif <condition 3>:

<case 3 statements>

…

else:

<default statements>

 Advantages of if-elif-else vs. nesting

 Number of cases is clear

 Each parallel case is at same level in code

 Less error-prone

reach here if

condition1 is false

reach here if

condition1 is false

AND condition2 is true

reach here if BOTH

condition1 AND

condition2 are false

Q7

Do TODO #4 in grade.py:

Implement grade4,

which returns the letter

grade for the given score

The counting pattern

 A special case of the accumulator pattern

 Example:

def count_As(scores):

″″″Returns the number of A in the given list of scores″″″

count = 0

for score in scores:

if (score >= 90):

count = count + 1

return count

print count_As([87, 92, 100, 75, 93])
Finish the quiz,

then do the TODO’s in the

countPassFail module.

Commit when done. Q8

Initialize

Loop

Count
conditionally

