
MORE ON FUNCTIONS,

MORE ON OBJECTS

CSSE 120—Rose Hulman Institute of Technology

Sit by a partner with whom you will pair program.

Assistants: Determine who is working with whom and

set up the repositories accordingly.

Outline

 Objects

What is a class? An object?

What do objects have: data attributes and methods

 How to construct an object

 How to use an object’s methods and data attributes

 Functions

 Passing parameters

 How it works, are actual arguments changed? Mutated?

Optional parameters

 Returning more than one value from a function

Classes and Objects – what are they?

 A class is a type of things

 Examples: Point, Line, GraphWin, Circle, Rectangle, Button, Student

 Style: class names (and only class names) begin with a capital letter

 An object is an instance of a class

 Example: you might have two GraphWin instances, each with many Point

and Line instances on it, as shown on the picture below

 Objects have:

 data attributes – what the object knows

 Example: a Point object knows its x and y

coordinates, the size of the dot used to represent it,

the color used to draw it, and more

 methods – what the object can do

 Example: a Line can get its center Point, move itself by a given delta,

draw itself on a given GraphWin, and more

 Methods are like functions, but associated with its object (and may be based on its object’s data)

Q1-3

How to construct an object

 The constructor for an object has the same name

as the object’s class.

 For example, to construct a GraphWin:

win = GraphWin()

 Constructors take arguments, just like functions do.

 Some constructs allow optional arguments

(i.e., arguments with default values), e.g.

win = GraphWin()

win = GraphWin(“I love Lucy”)

win = GraphWin(“xxx”, 800, 600)

win = GraphWin(width=500)

 Constructors allocate space for the object and initialize it,

setting its data attributes appropriately.

 The object lives until there is no longer anything that refers to it,

at which time the garbage collector can reclaim the object’s space
Q4-6

How to use an object’s methods and data attributes

 You ask an object to do something using the

―who . what with-what‖ notation:

win = GraphWin()

p = Point(100, 50)

p.draw(win)

who what with-what

p draws itself onto the given GraphWin

 In PyDev (in Eclipse) you can find out what an

object can do by constructing it, then typing the variable name

followed by a dot, and then pausing for a couple of seconds

 Watch me demo this; it is easier shown (and done) than explained.

 Sometimes you have to backspace over the dot and retype it (quirky!)

 Alternatively, you can execute help(Blah) to see documentation about Blah

Note that p is important – its

coordinates determine where the

point is drawn
• p is called the implied parameter

• win is called the explicit parameter

A similar notation

lets us refer to an

object’s data
attributes, e.g. p.x

to refer to p’s

x coordinate.

Q7-8

The getMouse() method of GraphWin

 Causes the program to pause,

waiting for the user to press the mouse somewhere in the window

 Returns the Point where the mouse was pressed

 So to find out where the mouse was pressed,

simply assign the returned value to a variable, e.g.

p = win.getMouse()

Recall that in the default coordinate system, the y axis goes down from the top

– so (0, 0) is the upper-left corner of the window

 Exercise: implement the clickMe module in your

Session08b-ObjectsAndGraphics project. Implement and test in small stages:

 Stage 1: The window appears, waits for a mouse-press, then disappears

 Stage 2: The window disappears after the 6th mouse-press

 Stage 3: For the first 5 mouse-presses, the mouse-position is displayed on the console

 Stage 4: Draws a small red-filled circle with blue outline at the mouse position each time

Functions – Review

 Functions can have multiple parameters

def distance (p1, p2): # p1, p2 are Points

xdist = abs(p1.getX()- p2.getX())

ydist = abs(p1.getY()- p2.getY())

return math.sqrt(xdist * xdist + ydist * ydist)

 Invoke (call) a function; must supply actual arguments:

d = distance(Point(-1,2), Point(2,6))

 Functions can return values (as in the distance function above)

def keyword begins the definition of a function.

Then parameters in parentheses (order matters).
colon begins body of a function

body of function

is indented.

End of indenting

means end of

function

definition.

Example below shows:

parameters (in purple)

invoking built-in function (abs, in black)

invoking methods (getX, getY, in green)

invoking function in math module

(math.sqrt, in red)

Capture

returned value

in a variable

Note: Everything that we have said and will say about functions, applies equally well to methods.

So we can have “ordinary” functions and functions that are methods.

Passing parameters

 Formal parameters receive values of actual

parameters

 If we assign new values to formal parameters within a

function or method, does this affect the actual parameters?

No!

 Example: see Session09-FunctionsAndObjects,

functionExamples module, first demonstration

 But if we mutate a formal parameter, the actual argument

is also mutated

 Example: see second demonstration

Q9-12

Optional parameters

 A python function may have some parameters that

are optional.

We can declare a parameter to be optional by

supplying a default value.
 Example: see Session09-FunctionsAndObjects, functionExamples module, third

demonstration

Q13

Also look at calls

to GraphWin

Returning Multiple Values

 A function can return multiple values

 def powers(n):

return n**2, n**3, n**4

 What's the type of the value returned by this call?

powers(4)

 Assign returned values individually, or to a tuple:

listOfPowers = powers(5)

p2, p3, p4 = powers(5)

Summary

 Objects

What is a class? An object?

What do objects have: data attributes and methods

 How to construct an object

 How to use an object’s methods and data attributes

 Dot and pause!

 Functions

 Passing parameters

 How it works, are actual arguments changed? Mutated?

Optional parameters

 Returning more than one value from a function

Pair Programming: Three Rectangles

You do this project with pair programming, so there is a driver and a navigator. (Switch
roles for the next exercise.)

1. Driver: Checkout the Session09-FunctionsAndObjects project from the partnership

SVN repository your instructor assigned to you.

Navigator: watch Driver’s screen closely and discuss problems/solutions throughout.

2. Run the threeRectangles module and see what it does.

3. Skim the code, talking with your partner about it, to see:

• How the module works, so far

• What you are to do (per the TODO: tags)

4. Using the Task tab, navigate to and complete the TODO’s

in the order that they are numbered (1, 2, …)

• The picture to the right shows an example

of what should be displayed on each rectangle when you are done.

• Remember the Do’s of pair programming: Talk, Listen, Be patient, Be respectful.

5. When done, Team → Commit your project back to your partnership repository.

 And then begin working on the rest of your homework, individually Q14-15

