
CSSE 120 – Fundamentals of Software DevelopmentSession 8

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project:

Objects & Graphics
• The object of objects

• Interaction among
objects

• Graphical objects

• Mouse events

08-DebuggingObjectsAndGraphics

Plus in-class time
working on these
concepts, continued
as homework.

Debugging
• What debugging includes

• Two ways to debug:

• Using print statements

• Using a debugger

• Debugging tips

Checkout today’s project:
08-DebuggingObjectsAndGraphics

Are you in the Pydev perspective? If not:

• Window ~ Open Perspective ~ Other

then Pydev

Messed up views? If so:

• Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

• Window ~ Show View ~ Other

then SVN ~ SVN Repositories

In your SVN repositories view (tab), expand your
repository (the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong
Workspace. Get help as needed.

Right-click on today’s project, then select Checkout.
Press OK as needed.

The project shows up in the
Pydev Package Explorer

to the right. Expand and browse the modules under
src as desired.

Troubles getting
today’s project?

If so: 

Outline

 Questions?

 Debugging

 What debugging

includes

 Two ways to debug:

 print statements

 debugger

 Using the Debugger

in Eclipse

 Debugging tips

 Objects

 What are objects?

Why are they useful?

 How do you construct an object?

 What do objects have? Fields

 What can objects do? Methods

 Interaction among objects.

UML class diagrams

 Examples of objects
from zellegraphics

 GraphWin, Point, Line,

Circle. Mouse events.

Check out today’s project:
08-DebuggingObjectsAndGraphics

Plus in-class
time working
on these
concepts,
continued as
homework.

Debugging

 Debugging includes:

 Discovering errors

 Coming up with a hypothesis about the cause

 Testing your hypothesis

 Fixing the error

 Ways to debug

 Insert print statements to show program flow and data

 Use a debugger:

 A program that executes another program and displays its

runtime behavior, step by step

 Part of every modern IDE Q1

Using a Debugger

 Typical debugger commands:

 Set a breakpoint—place where you want the debugger to pause

the program

 Single step—execute one line at a time

 Inspect a variable—look at its changing value over time

 Debugging example. In today’s project in Eclipse:

 Briefly examine the 01-MoveCircle.py module.

 In that module, start a debugging session in the Debug perspective:

 Window  Open Perspective

 Other, then Debug

 Click Debug Run icon

(top-left side of work bench) Debug Run Ordinary Run

Learn how to, in the Debugger:

1. Start a debugging session in the Debug Perspective.

 Switch back and forth between the Debug and Pydev perspectives.

2. Set breakpoints in your code.

 And unset them.

3. Inspect the variables in the current scope at a breakpoint.

 See their current values and types.

 See which ones have changed since the last breakpoint.

 Expand them to see their fields and the fields' values.

4. Debug Run in the Debug Perspective:

 Resume, continuing to the next breakpoint

 Single-Step to the next statement

 At a function call, Step-Over it

 Inside a function, Step-Return from it

Using the debugger in Eclipse

 Set a breakpoint

 Double click in left margin of editor view

 Step over (when you know a function works)

 Click step-over icon or use F6 key

 Variable inspection

 Look at the new value of i, cir after each time though

the loop

Sample Debugging Session: Eclipse

This is the

Debug

perspective

A view that shows

all the variables

A view that

shows all the

executing

functions

This view is an editor that

shows the line of code being

executed and lets you make

changes to the file

A view that shows

the outline of the

module being

examined (Outline

View)

Tips to Debug Effectively

 Reproduce the error

 Simplify the error

 Divide and conquer

 Set a breakpoint and inspect: does the

error occur before the breakpoint or after?

 Know what your program should do

 Look at the details

 Compare the actual content of variables against the values that you think

they should have.

 This often ―wakes you up‖ into reading what is actually written in the code

instead of what you intended to write.

 Understand each bug before you fix it

 Practice!

Use the scientific method:

• hypothesize

• experiment

• fix bug

• repeat experiment

Outline of next part of this session

 Objects

 What are objects? Why are they useful?

 How do you use objects?

 How do you construct an object?

 What do objects have? Fields

 What can objects do? Methods

 Interaction among objects. UML class diagrams.

 Examples of objects from zellegraphics

 GraphWin, Point, Line, Circle

 Mouse events

What are objects?

 Traditional view, in languages like C

 Data types are passive

 They have values

 There are operations that act on the data types

 The data type itself cannot do anything

 Object-oriented view, in languages like Python
(and most other modern languages)

 Have objects, which are active data types. Objects:

 Know stuff – they contain data

 The data that an object holds are its instance variables (aka fields)

 Can do stuff – they can initiate operations

 The operations that an object can do are its methods Q2

Traditional, non-object-oriented, design

 Break the problem into subproblems. That is:

 To solve the problem I need to do: A, B, C, …

 To solve A, I need to do: A1, A2, A3, …

 To solve A1, I need to do A1a, A1b, A1c, …

 To solve A2, I need to do A2a, A2b, A2c, …

 etc

 To solve B, I need to do: B1, B2, B3, …

 etc, until the units are so small that you can just do them

 The units become functions

 This process is called procedural decomposition

Q3

Modern, object-oriented, design

 Basic idea of object-oriented (OO) development

 View a complex system as interaction of simple objects

 In doing OO development, ask:

1. What things (objects) are involved

in the solution to my problem?

The types of those things become our classes

2. For each type of thing (i.e., each class),

what responsibilities does it have?

What can it do? E.g. A list can append stuff to itself.

These responsibilities become the methods of that class: append

3. To carry out those responsibilities:

a. What other objects does it need help from? Relationships between classes

b. What objects does it have within? Become the instance variables of the class.

Q4-6

These things often come from nouns

in the problem description, e.g.

single concepts visual elements

abstractions of real-life entities

actors utilities

These responsibilities

often come from verbs in

the problem description

Why is the object-oriented view useful?

 Procedural decomposition is useful and forms an

important part of OO design

 But for complex systems, we often find it easier to

think about the complex system as the interaction of

simple objects than to just ―break it down into its

parts‖

 In practice, most complex software systems today

are designed using OO design

How do you use objects?

 To construct an object:

win = GraphWin()

p1 = Point(500, 450)

line = Line(p1, Point(30, 40))

circle = Circle(p1, 100)

 To ask an object to do something,

i.e. to apply its methods to it:

p1.draw(win)

line.move(45, -60)

x = p1.getX()

center = circle.getCenter()

 To reference what the object knows

(its instance variables): p1.x circle.p1 circle.p2

Recall that objects:
• Know stuff (fields)
• Can do stuff (methods)

Constructor:
• Call it like a function, using the

name of the class
• Uniform style: Class names begin

with an uppercase letter
• The constructor allocates space

for the object and does whatever
initialization the class specifies

Method call:
• Use the dot notation:

Who.doesWhat(withWhat)

Just like a function call, except that the method
has access to the object invoking the method.
• So the object is an implicit argument to the

method call

Instance variable reference:
• Use the dot notation but without parentheses

Who.hasWhat

How do objects interact?

 Objects interact by sending each other messages

Message: request for object to perform one of its

operations

 Example: the brain can ask the feet to walk

 In Python, messages happen via method calls.

win = GraphWin() # constructor

p = Point(50, 60) # constructor

p.getX() # accessor method

p.getY() # accessor method

p.draw(win) # method

Q7-8

How do objects interact? Point

p = Point(50, 60)

UML object diagram for a point
object.

UML  Unified Modeling
Language

Q9-10

Simple graphics programming

 Graphics is fun and provides a great vehicle for

learning about objects

 Computer Graphics: study of graphics programming

 Graphical User Interface (GUI)

Q11

Review: You choose how to import

 Must import graphics library before accessing it

 >>> import zellegraphics

 >>> win = zellegraphics.GraphWin()

 Another way to import graphics library

 >>> from zellegraphics import *

 win = GraphWin()

Using graphical objects

 Using different types of objects from the graphics

library, draw the following alien face and message

in the 03-alienFace.py module

Q12

Paige clearly isn’t working on homework for CSSE120

 Preview of tonight’s homework:

1. Read in and draw cool plots from the points in the

files you generated in HW6 and 7

2. Create a cool slideshow picture viewer!

Review: Class and object terminology

 Different types of objects

 Point, Line, Rectangle, Oval, Text

 These are examples of classes

 Different objects

 head, leftEye, rightEye, mouth, message

 Each is an instance of a class

 Created using a constructor

Objects have instance variables (called fields in some

languages)

Objects use methods to operate on instance variables

 Accessor methods return data from the object Q13 - 14

Object interaction to draw a circle

from zellegraphics import *

circ = Circle(Point(100, 100), 30)

win = GraphWin()

circ.draw(win)

UML diagram for creating and
drawing a circle object.

UML  Unified Modeling
Language

Interactive graphics

 GUI—Graphical User Interface

 Accepts input

 Keyboard, mouse clicks, menu, text box

 Displays output

 In graphical format

On-the-fly

 Developed using Event-Driven Programming

 Program draws interface elements (widgets) and waits

 Program responds when user does something

Q15

getMouse

 win.getMouse()

 Causes the program to pause, waiting for the user to

click with the mouse somewhere in the window

 To find out where it was clicked, assign it to a variable:

 p = win.getMouse()

Q16-17

Mouse Event Exercise

Together, lets’ solve the following problem:

Create a program in module, 04-clickMe.py, with a

window labeled ―Click Me!‖ that displays the

message You clicked (x, y) to the console the first 5

times the user clicks in the window.

The program also draws a red-filled circle, with blue

outline, in the location of each of these first 5 clicks.

The program closes the window on the 6th click

Coordinate systems

 An important use of graphics is to represent data

visually

 Example: a bar chart

 We really want (0,0) to be in the lower-left corner

(0, 0) x

y (0, 0) x

y

Default coordinates
Desired coordinates

Desired coordinate system

 win.setCoords(x1, y1, x2, y2) method from

GraphWin class

 Sets the coordinates of the window to run from (x1,y1) in

the lower-left corner to (x2,y2) in the upper-right corner.

(0, 0) x

y

