
SUBVERSION , FUNCTIONS,

PARAMETERS, AND FILE

HANDLING

CSSE 120 – Rose-Hulman Institute of Technology

Outline

 Tools: Version Control

 Functions :

Math, Maple, Python

 Function definition and invocation mechanics

 Exercise: writing and invoking a function sumPowers

 Nested function calls and execution order

 Code-reading exercise

 Files

Opening, reading/writing, closing

 Begin RobotPathViaPoints exercise

Software Engineering Tools

 The computer is a powerful tool

 We can use it to make software development easier

and less error prone!

 Some software engineering tools:

 IDEs, like Eclipse and IDLE

 Version Control Systems, like Subversion

 Testing frameworks, like JUnit

 Diagramming applications, like UMLet, Violet and Visio

Modeling languages, like Alloy, Z, and JML

Version Control Systems

 Store ―snapshots‖ of all the changes to a project over time

 Benefits:

 Multiple users

 Multiple users can share work on a project

 Record who made what changes to a project

 Provide help in resolving conflicts between what the multiple users do

 Maintain multiple different versions of a project simultaneously

 Logging and Backups

 Act as a ―global undo‖ to whatever version you want to go back to

 Maintain a log of the changes made

 Can simplify debugging

 Drop boxes are history!

 Turn in programming projects

 Get it back with comments from the grader embedded in the code

Our Version Control System

 Subversion, sometimes called SVN

 A free, open-source application

 Lots of tool support available

Works on all major computing platforms

 TortoiseSVN for version control in Windows Explorer

 Subclipse for version control inside Eclipse

Q1a

Version Control Terms

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Repository: the

copy of your

data on the

server, includes

all past versions
Working copy:

the current

version of your

data on your

computer

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Q1b

Version Control Steps—Check Out

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

…
Working

Copy

Working

Copy

Working

Copy

Working

Copy

Check out:

grab a new

working copy

from the

repository

Q2a

Version Control Steps—Edit

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Edit: make

independent

changes to a

working copy

Version Control Steps—Commit

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Commit: send

a snapshot of

changes to

the repository

Q2b

Version Control Steps—Update

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Update: make

working copy

reflect

changes from

repository

Q2c

The Version Control Cycle

Check

Out

EditUpdate

Commit Update

Update and

Commit often!

Check out today’s exercise

 Go to the SVN Repository view at the bottom of the

workbench

 If it is not there,

WindowShow ViewOtherSVN RepositoriesOK

 Browse SVN Repository view for Session07 project

 Right-click it, and choose Checkout

 Accept options as presented

 In Package Explorer, find sumPowers.py inside your

Session07 project

 Do the first TODO (put your name on line 1), and

commit your changes

If you're stuck, get help and see Step 3 of http://www.rose-

hulman.edu/class/csse/csse120/201030robotics/Homework/hw05-installEclipse.html

http://www.rose-hulman.edu/class/csse/csse120/201030robotics/Homework/hw05-installEclipse.html
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/Homework/hw05-installEclipse.html
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/Homework/hw05-installEclipse.html
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/Homework/hw05-installEclipse.html
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/Homework/hw05-installEclipse.html
http://www.rose-hulman.edu/class/csse/csse120/201030robotics/Homework/hw05-installEclipse.html

Why functions?

 A function allows us to group together several

statements and give them a name by which they

may be invoked.

 Abstraction (easier to remember the name than the

code)

 Compactness (avoids duplicate code)

 Flexibility (parameters allow variation)

 Example:

def complain(complaint):

print "Customer:", complaint

Q3

Functions in different realms

We compare the mechanisms for defining and

invoking functions in three different settings:

 Standard mathematical notation

 Maple

 Python

Functions in Mathematics

 Define a function:

 f(x) = x2 – 5

 Invoke (call) the function:



 When the call f(6) is made, the actual parameter 6 is

substituted for the formal parameter x, so that the

value is 62 – 5.

 Some people use the term actual argument, or just argument,

where we used actual parameter

Formal Parameter. Used so

that we have a name to use

for the argument in the

function's formula.

Two calls to function f. The

first with actual parameter 6,

and the second with 3.

Q4

Functions in Maple

Formal Parameter. Used so

that we have a name to use

for the argument in the

function's formula.

Two calls to function f. The

first with actual parameter 6,

and the second with 3.

Functions in Python



 How would you evaluate f(f(2))?

 In Mathematics, functions calculate a value.

 In Python we can also define functions that instead

do something, such as print some values.

Formal Parameter. Used so

that we have a name to use

for the argument in the

function's formula.

Two calls to function f. The

first with actual parameter 6,

and the second with 3.

Q5

Review: Parts of a Function Definition

>>> def hello():

print "Hello"

print "I'd like to complain about this parrot"

Defining a function

called ―hello‖

Indenting tells interpreter

that these lines are part of

the hello function

Blank line tells interpreter

that we’re done defining

the hello function

Review: Defining vs. Invoking

 Defining a function says what the function should do

 Invoking a function makes that happen

 Parentheses tell interpreter to invoke (aka call) the

function

>>> hello()

Hello

I'd like to complain about this parrot

Q6

Review: Function with a Parameter

 def complain(complaint):

print "Customer: I purchased this parrot not half " +

"an hour ago from this very boutique"

print "Owner: Oh yes, the Norwegian Blue. " +

" What's wrong with it?"

print "Customer:", complaint

 invocation:

 complain("It's dead!")

When a function is invoked (called),

Python follows a four-step process:

1. Calling program pauses

at the point of the call

2. Formal parameters get

assigned the values

supplied by the actual

parameters

3. Body of the function is

executed

4. Control returns to the

point in calling program

just after where the

function was called

from math import pi

def deg_to_rads(deg):

rad = deg * pi / 180

return rad

degrees = 45

radians = deg_to_rads(degrees)

print "%d deg. = %0.3f rad." \

% (degrees, radians)

1 4

2: deg = 45

3

Functions can (and often should)

return values
 We've written functions that just do things

 hello()

 complain(complaint)

 We've used functions that return values

 abs(-1)

 range(10)

 Now let’s define a function that returns a value

def square(x):

return x * x

Why might it be better to return than print when a function performs a
calculation?

Answer: so that we can use the returned value in expressions, e.g.
print square(x) + cube(x)

return statement

Q7

Exercise – writing a sumPowers() function

 Go to the sumPowers module in the Session07 project

you checked out in Eclipse

 Do the TODO’s

 There are 4 TODO’s

 The last one is in main, near the bottom of the file

 When you believe that your sumPowers is correct

(notice that we gave you test cases!), commit your

code back to your repository

If a Function Calls a Function …

def g(a,b):

print a+b, a-b

def f(x, y):

g(x, y)

g(x+1, y-1)

f(10, 6)

 Trace what happens when the last line of this code

executes

 Now do the similar one on the quiz
Q8

An exercise in code reading

 With a partner, read and try to understand the

code that is on the handout.

 You can probably guess what the output will be.

But how does it work?

 Figure that out, discuss it with your partner and

answer quiz question 10.

Optional Challenge Problem for later, just for grins: try

to write "There's a Hole in the Bottom of the Sea" or ―The

Green Grass Grew All Around‖ in a similar style.

 When you are done, turn in your quiz and start the

homework Q9-10

http://www.songsforteaching.com/folk/theresaholeinthebottomofthesea.htm
http://kids.niehs.nih.gov/lyrics/greengrassgrew.htm
http://kids.niehs.nih.gov/lyrics/greengrassgrew.htm

File Processing

 Manipulating data stored on disk

 Key steps:

Open file

 For reading or writing

 Associates file on disk with a file variable in program

Manipulate file with operations on the file variable

 Read or write information

 Close file

 Causes final ―bookkeeping‖ to happen

Note: disks are slow, so changes to the file are often kept in a buffer

in memory until we close the file or otherwise “flush” the buffer.

File Writing in Python

 Open file:

 Syntax: <filevar> = open(<name>, <mode>)

 Example: outFile = open('average.txt', 'w')

 Replaces contents!

 Write to file:

 Syntax: <filevar>.write(<string>)

 Example: outFile.write(“And this isn't my nose.\
It's a false one.”)

 Close file:

 Syntax: <filevar>.close()

 Example: outFile.close()

File Reading in Python

 Open file: inFile = open('grades.txt', 'r')

 Read file:

 <filevar>.read() Returns one BIG string

 <filevar>.readline() Returns next line, including \n

 <filevar>.readlines() Returns BIG list of strings, 1 per line

 for <lineVar> in <filevar> Iterates over lines efficiently

 Close file: inFile.close()

 When you are done, start working on the homework

 When both you and your robot partner are ready, work on the robotics

problem RobotPathViaPoints

A ―Big‖ Difference

 Consider:

 inFile = open ('grades.txt', 'r„)

for line in inFile.readlines():

process line

inFile.close()

 inFile = open ('grades.txt', 'r„)

for line in inFile:

process line

inFile.close()

 Which takes the least memory?

 Answer: the second approach, because in it Python reads lines into

memory one at a time and only as needed instead of all at once, as in

the first approach

