
CSSE 120 – Fundamentals of Software Development

Software Dev.

Exercise

 Day of year module

Character Strings
String operations

Lists and strings

String encodings

String formatting

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

• From your bookmark, or from the Lessons tab in Angel

5. Open the Slides for today if you wish

Session

4

Day, Month  Day of year

 When calculating the amount of money required to

pay off a loan, banks often need to know what the

"ordinal value" of a particular date is

 For example, March 6 is the 65th day of the year (in a

non-leap year)

 We need a program to calculate the day of the

year when given a particular month and day

Q1

The Software Development Process

Analyze the Problem

Determine Specifications

Create a Design

Implement the Design

Test/Debug the Program

Maintain the Program

Phases of Software Development

 Analyze: figure out exactly what the problem to be

solved is

 Specify: WHAT will program do? NOT HOW.

 Design: SKETCH how your program will do its work,

design the algorithm

 Implement: translate design to computer language

 Test/debug: See if it works as expected.

 bug == error, debug == find and fix errors

 Maintain: continue developing in response to needs

of users

Checkout today’s project

 Go to SVN Repository view, at bottom of the workbench

 If it is not there,

WindowShow ViewOtherSVN  SVN Repositories

 Browse SVN Repository view for

 06-StringsAndLists project

 Right-click it, and choose Checkout

 Accept options as presented

 Expand the 06-StringsAndLists project that appears in

Package Explorer (on the left-hand-side)

 Browse the modules.

 Let us do the exercise in the 1-daysOfYear.py module

Strings (character strings)

 String literals (constants):

 "One\nTwo\nThree"

 "Can’t Buy Me Love"

 ′I say, "Yes." You say, "No." ′

 "'A double quote looks like this \",' he said."

 """I don't know why you say, "Goodbye,"

I say "Hello." """

Q2-3

Operating on Strings

Operations/Methods What does each of these operation/method do?

s1 + s2
Concatenates two strings

e.g. “xyz” + “abc”

s * <int>
Replicates string s <int> times

e.g. “xyz” * 4

 s.capitalize() Copy of s with only 1st letter capitalized

 s.lower() Copy of s with all lower case characters

s.reverse() Copy of s will all characters reversed

s.split() Split s into a list of substrings

Some more string methods

Methods What does each of these operation/method do?

s.count(sub) Count the number of occurrences of sub in s

s.find(sub) Find first position where sub occurs in s

 s.title()
Copy of s with first character of each word

capitalized

 s.replace(old, new)
Replace all occurrences of old in s with

new

s.lstrip() Copy of s with leading white space removed

s.join(list)
Concatenate list into a string, using s as

the separator

Practice with string operations

 Many of the operations listed in the book, while they work

in Python 2.5, have been superseded by newer ones

 + is used for String concatenation: "xyz" + "abc"

 * is used for String duplication: "xyz " * 4
 >>> franklinQuote = 'Who is rich? He who is content. ' +

'Who is content? Nobody.'

 >>> franklinQuote.lower()

 'who is rich? he who is content. who is content? nobody.'

 >>> franklinQuote.replace('He', 'She')

 'Who is rich? She who is content. Who is content? Nobody.'

>>> franklinQuote.find('rich')

 Q4-5

 Lists are mutable:

 colors = ["red", "white", "blue"]

 colors[1] = "grey"

 colors.append(“cyan")

 A string is an immutable sequence of characters

 >>> building = "Taj Mahal"

 >>> building[2]

 >>> building[1:4]

 >>> building[4] = “B”

colors becomes
 ["red", "grey", "blue"] then

 ["red", "grey", "blue". “cyan"]

O

K

NOT OK.

Gives an error message when executed.

Strings are immutable sequences

Q6-7

Strings and Lists

 A String method: split breaks up a string into separate

words
 >>> franklinQuote = 'Who is rich? He who is content. ' +

 'Who is content? Nobody.‟

 >>> myList = franklinQuote.split(„ „)

['Who', 'is', 'rich?', 'He', 'who', 'is', 'content.',

'Who', 'is', 'content?', 'Nobody.’]

 A string method: join creates a string from a list
 '#'.join(myList)

 'Who#is#rich?#He#who#is#content.#Who#is#content?#Nobody.'

 What is the value of myList[0][2]?

 Do exercise in 2-practiceWithStringsAndLists module

Getting a string from the user

take a break Q9

String Representation

 Computer stores 0s and 1s

 Numbers stored as 0s and 1s

 What about text?

 Text also stored as 0s and 1s

 Each character has a code number

 Strings are sequences of characters

 Strings are stored as sequences of code numbers

 Does it matter what code numbers we use?

 Translating: ord(<char>) chr(<int>)

Q10-11

Consistent String Encodings

 Needed to share data between computers, also

between computers and display devices

 Examples:

 ASCII—American Standard Code for Info. Interchange

 ―Ask-ee‖

 Standard US keyboard characters plus ―control codes‖

 8 bits per character

 Extended ASCII encodings (8 bits)

 Add various international characters

 Unicode (16+ bits)

 Tens of thousands of characters

 Nearly every written language known

Q12

String Formatting

 Allows us to format complex output for display

 It treats a string as a template with slots --- {}

 Provided values are plugged into each slot

 Uses a built-in method, format(), that takes values to

plug into each slot

 <template-string>.format(<values>)

 What does each slot look like?

 {<index>:<format-specifier>}

 <index> tells which of the parameters is inserted in slot

 <format-specifier> describes how this slot will be

formatted

Format Specifiers

 Syntax:

 %<width>.<precision><typeChar>

 Width gives total spaces to use

 0 (or width omitted) means as many as needed

 0n means pad with leading 0s to n total spaces

 -n means ―left justify‖ in the n spaces

 Precision gives digits after decimal point, rounding if needed.

 TypeChar is:

 f for float, s for string, or d for decimal (i.e., int) [can also use i]

 Note: this RETURNS a string that we can print

 Or write to a file using write(string), as you’ll need to do on the

homework 6 assignment (HW6)

 submit quiz Q10-11

Begin HW6

 Although you do not have a reading assignment

and Angel quiz, you are strongly encouraged to

begin working on your homework early.

