
CSSE 120 – Fundamentals of Software Development

Software Development
Processes

• Waterfall, Spiral, Agile

• Exercise using Waterfall:
the Day of Year from Month/Day problem

Strings
• String operations

• Lists and strings

• String encoding

• String formatting

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

• From your bookmark, or from the Lessons tab in Angel

5. Open the Slides for today if you wish

Session 6

Outline – Software Development Process,

then Strings

 Strings

String operations

 Lists and strings

String encoding

String formatting

Plus in-class time working
on the above concepts,
continued as homework.

 Software Development

Process
 Three historical processes:

 Waterfall

 Spiral

 Agile

 Exercise: Day of Year from

Month/Day

 Using Waterfall, appropriate for

low complexity / short duration

development like today’s exercise

Month, Day  Day of year

 We need a program that, given a particular

month and day in that month, calculates the

―ordinal value‖ (i.e., day of the year) for that

month/day.

 For example, given March 6 as our month/day, our

program should determine that it is the 65th day of

the year (in a non-leap year).

 Banks often need this ―ordinal value‖ to compute

interest, penalties and so forth.

Modern software engineering uses:

 High-level languages and

interpreters/compilers

 Powerful Integrated

Development Environments (IDEs)

 Version Control systems

 Testing frameworks

 Diagramming applications

 Modeling languages

 Task management trackers

 Methodologies like:

 Waterfall

 Spiral

 Agile, e.g.

 Extreme Programming

 Scrum

 Sub-processes like:

 Coding to a contract

 Test-driven development

Powerful TOOLS, e.g. Powerful PROCESSES, e.g.

4

Today’s focus

Waterfall Software

Development Process

Requirements

Design

Implementation

Verification

Maintenance

What is the overall structure (architecture) of the

system? Procedural decomposition:
Divide top-level tasks into functions, then

functions into sub-functions, etc. Object-
oriented design: make a UML class diagram.

Write and debug the code. Iterative
enhancement: Develop the product in stages, doing

black-box testing of each stage before continuing. Bug ≡
problems exposed by an error, debug == you, the

programmer, fix the error. Unit testing, system testing.

Verify that the system meets its
specification and is accepted by

the client. For us, that means test the
code. Often done by another agency
(not the coders). Integration testing,

acceptance testing.

Deploy the system.
Track and correct
bugs reported by
users, doing new

releases. Adjust to
changing

circumstances, e.g.
new hardware and
operating systems.

Analyze: Figure

out what the
problem to be

solved is.

Specify: WHAT

the system will do
(not how it will do

it). Inputs and
outputs.

Requirements

 In the real world, you obtain requirements by interacting with the customers.

 For our example problem (day-of-year from month/day), we are our own customers.

 What is the problem that we are trying to solve?

 Given a particular month and day in that month, calculate the ―ordinal value‖ (i.e., day

of the year) for that month/day.

 What is the specification of the problem? E.g.

 What is the form of the input? Who supplies it?

 User supplies month (3-letter, lowercase) and day of month (integer).

On separate lines, with prompts.

 What is the form of the output?

 Prints the right day of year, with an appropriate message that ―echoes‖ the input.

 What additional constraints are there?

 We will NOT require handling leap years.

 We will NOT do verification that the user enters legal inputs.

 Real-world problems have additional constraints, like what hardware the system

will require and how fast it must be developed, in what budget. Q1

Design

 Sketch how that the program will do its work.

 Specification ≡ WHAT the program will do

 Design ≡ HOW the program will do it

 For our day-of-year from month/day problem, ask:

 What application-domain data will we need (besides user

input) to solve the problem?

 Use two parallel lists as our in-program data:

 One of month names (―Jan‖, ―Feb‖, etc)

 One of month lengths (31, 28, 31, 30, etc)

 A better alternative would be to have a month class, and bundle each

month’s name and length inside the month object.

 What algorithm shall we use to compute the answer?

 Once we get the month and day as input, loop through the two lists in

parallel, summing the lengths of the months.

Q2

Implement

 Checkout today’s project from SVN:

 06-StringsAndLists

 We will work together to

implement our solution in the module:

 1-daysOfYear.py

 Design (repeated from previous slide):

What application-domain data will we need (besides
user input) to solve the problem?

• Use two parallel lists as our in-program data:

• One of month names (“Jan”, “Feb”, etc)

• One of month lengths (31, 28, 31, 30, etc)

What algorithm shall we use to compute the answer?

• Once we get the month and day as input, loop
through the two lists in parallel, summing the
lengths of the months.

Are you in the Pydev perspective? If not:

• Window ~ Open Perspective

 ~ Other

then Pydev

Messed up views? If so:

• Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not
there:

• Window ~ Show View ~ Other

then SVN ~ SVN Repositories

In your SVN repositories view (tab),
expand your repository (the top-level item)
if not already expanded.

• If no repository, perhaps you are in the
wrong Workspace. Get help as needed.

Right-click on today’s project,
then select Checkout. Press OK as needed.

The project shows up in the
 Pydev Package Explorer
to the right. Expand and browse the modules
under src as desired.

Software Development Processes –

Waterfall

 We used Waterfall in our exercise

 Perfectly fine for low complexity / short duration projects, but otherwise

generally discredited

 Other processes use the same Stages as Waterfall, however, in some

form or another

 Next slides show two other Software Development Processes,

just for your general education

 Key in them (and all modern software development processes) is to

iterate – back to the customer, then forward to reflect the changes the

customer requires

 No need to learn details of the next two slides

 But important to recognize that for most real-world software

development projects, Waterfall is NOT appropriate and iterative

processes are used instead

The Spiral
software

development
process (Boehm,

1988)

Agile software development processes

 What is Agile Software Development?
In the late 1990’s several methodologies began to get increasing public attention. Each had a different

combination of old ideas, new ideas, and transmuted old ideas. But they all emphasized close

collaboration between the programmer team and business experts; face-to-face communication (as

more efficient than written documentation); frequent delivery of new deployable business value; tight,

self-organizing teams; and ways to craft the code and the team such that the inevitable requirements

churn was not a crisis.

 The Manifesto for Agile Software Development
We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

 That is, while there is value in the items on the right, we value the items on the left more.

See
http://www.agilealliance.org/

for fascinating details

http://www.agilealliance.org/
http://www.agilealliance.org/

Jeff Sutherland,
one of the
developers of Scrum
(see next slide).

Kent Beck, co-

author of the JUnit
testing framework
and a creator of
the Extreme
Programming and
Test Driven
Development
methodologies.

Two of the 17 original signatories of the
Manifesto for Agile Software Development

One popular Agile software development process – Scrum

Strings (sequences of characters)

 String literals (constants):

 "One\nTwo\nThree"

 "Can't Buy Me Love"

 ′I say, "Yes." You say, "No." ′

 "'A double quote looks like this \",' he said."

 """I don't know why you say, "Goodbye,"

I say "Hello." """

Q3-4

Operating on Strings

Operations/Methods What does each of these operation/method do?

s1 + s2
Concatenates two strings

e.g. "xyz" + "abc"  "xyzabc"

s * <int>
Replicates string s <int> times

e.g. "xyz" * 4  "xyzxyzxyzxyz"

 s.capitalize()
Copy of s with only 1st letter

capitalized

 s.lower() Copy of s with all lower case characters

s.reverse() Copy of s will all characters reversed

s.split()
List of the words in s (split on spaces

by default)

Some more string methods

Methods What does each of these operation/method do?

s.count(sub)
Returns the number of occurrences of sub in

s

s.find(sub)
Returns the first position (index, 0-based)

where sub occurs in s

 s.title()
Copy of s with first character of each word

capitalized

 s.replace(

old, new)

Copy of s where all occurrences of old in s

have been replaced with new

s.lstrip() Copy of s with leading white space removed

s.strip()
Copy of s with leading and trailing white

space removed

s.join(list)
Concatenate list into a string, using s as

the separator between items in the list

Practice with string operations

 Many of the operations listed in the book, while they work

in Python 2.5, have been superseded by newer ones

 + is used for String concatenation: "xyz" + "abc"

 * is used for String duplication: "xyz " * 4
 >>> franklinQuote = 'Who is rich? He who is content. ' +

'Who is content? Nobody.'

 >>> franklinQuote.lower()

 'who is rich? he who is content. who is content? nobody.'

 >>> franklinQuote.replace('He', 'She')

 'Who is rich? She who is content. Who is content? Nobody.'

>>> franklinQuote.find('rich')

 Q5-6

Strings are immutable sequences

 Lists are mutable:

 colors = ["red", "white", "blue"]

 colors[1] = "grey"

 colors.append("cyan")

 A string is an immutable sequence of characters

 >>> building = "Taj Mahal"

 >>> building[2]

 >>> building[1:4]

 >>> building[4] = "B"

colors becomes
 ["red", "grey", "blue"] then

 ["red", "grey", "blue". “cyan"]

O

K

NOT OK.

Gives an error message when executed.

Q7-8

Strings and Lists

 A String method: split breaks up a string into separate

words
 >>> franklinQuote = 'Who is rich? He who is content. ' +

 'Who is content? Nobody.’

 >>> myList = franklinQuote.split(' ')

['Who', 'is', 'rich?', 'He', 'who', 'is', 'content.',

'Who', 'is', 'content?', 'Nobody.']

 A string method: join creates a string from a list
 '#'.join(myList)

 'Who#is#rich?#He#who#is#content.#Who#is#content?#Nobody.'

 What is the value of myList[0][2]?

 Do exercise in 2-practiceWithStringsAndLists module

Getting a string from the user

take a break Q10

String Representation

 Computer stores 0s and 1s

 Numbers stored as 0s and 1s

 What about text?

 Text also stored as 0s and 1s

 Each character has a code number

 Strings are sequences of characters

 Strings are stored as sequences of code numbers

 Does it matter what code numbers we use?

 Translating: ord(<char>) chr(<int>)

Q11-12

Consistent String Encodings

 Needed to share data between computers, also

between computers and display devices

 Examples:

 ASCII—American Standard Code for Info. Interchange

 ―Ask-ee‖

 Standard US keyboard characters plus ―control codes‖

 8 bits per character

 Extended ASCII encodings (8 bits)

 Add various international characters

 Unicode (16+ bits)

 Tens of thousands of characters

 Nearly every written language known

Q13

String Formatting

 Allows us to format complex output for display

 It treats a string as a template with slots --- {}

 Provided values are plugged into each slot

 Uses a built-in method, format(), that takes values to

plug into each slot

 <template-string>.format(<values>)

 What does each slot look like?

 {<index>:<format-specifier>}

 <index> tells which of the parameters is inserted in slot

 <format-specifier> describes how this slot will be

formatted

Format Specifiers

 Syntax:

 %<width>.<precision><typeChar>

 Width gives total spaces to use

 0 (or width omitted) means as many as needed

 0n means pad with leading 0s to n total spaces

 -n means ―left justify‖ in the n spaces

 Precision gives digits after decimal point, rounding if needed.

 TypeChar is:

 f for float, s for string, or d for decimal (i.e., int) [can also use i]

 Note: this RETURNS a string that we can print

 Or write to a file using write(string), as you’ll need to do on the

homework 6 assignment (HW6)
Q14-15, turn in quiz

Begin HW6

 Although you do not have a reading assignment

and Angel quiz, you are strongly encouraged to

begin working on your homework early.

