
CSSE 120 – Rose-Hulman Institute of Technology

• An example of a software development process:

the day-month to day-of-year problem

• String operations

• File operations

• Exercises on the above

• Robotics:  motion commands as an example of the 

input-compute-output pattern

Please sit with your robot partner

• Well, sit with your robotics partner (presumably your partner is not a robot…)



Outline

 Lists – review

 range function for creating a List

 Looping through a List

 Applying the sum function to a List

 An example of a software development process:

the day-month to day-of-year problem

 Strings

 How strings are represented:  the ord and chr functions

 Encodings:  ASCII, extended ASCII, Unicode

 Formatting with the % operator

 input versus raw_input

 File operations:  open, close, read, write
Q1



Day, Month  Day of year

 When calculating the amount of money required to 

pay off a loan, banks often need to know what the 

"ordinal value" of a particular date is

 For example, March 6 is the 65th day of the year (in a 

non-leap year)

 We need a program to calculate the day of the 

year when given a particular month and day



The Software Development Process

Analyze the Problem

Determine Specifications

Create a Design

Implement the Design

Test/Debug the Program

Maintain the Program



Phases of Software Development

 Analyze: figure out exactly what the problem to be solved is

 Need to be able to find the day of the year, when given month and date.

 Specify: WHAT will program do?   NOT HOW.

 User provides month (three letters, lowercase) and day of month (integer).  

Program calculates and prints the day of the year.  Not required to work for 

leap years.

 Design: SKETCH how your program will do its work, design the 

algorithm

 Use two parallel lists, one of month names, one of month lengths.  Once we get 

the month and day, use a loop to add up the lengths of the previous months.

 Implement: translate design to computer language

 Test/debug: See if it works as expected.

 bug == error, debug == find and fix errors

 Maintain: continue developing in response to needs of users



String Representation

 Computer stores 0s and 1s

 These 0’s and 1’s are called bits

 Numbers are stored as sequences of 0s and 1s

 Fixed-length sequences for int and float

 Arbitrarily long sequences for long

 What about text?

 Text is also stored as sequences of 0s and 1s

 Each character has a code number

 Strings are sequences of characters

 So Strings are stored as sequences of code numbers

 Does it matter what code numbers we use?

 No, as long as we’re consistent – see next slide Q2-3

Translating:

• ord(<char>)

• chr(<int>)

>>> ord("R")

82

>>> ord("r")

114

>>> chr(114)

'r'

>>> chr(115)

's'

>>> chr(113)

'q„

>>> ord(„ „)

32

>>> ord(„$‟)

36



Consistent String Encodings

 Needed to share data between computers

 Examples:

 ASCII—American Standard Code for Info. Interchange

 ―Ask-ee‖

 Standard US keyboard characters plus ―control codes‖

 8 bits per character

 Extended ASCII encodings (8 bits)

 Add various international characters

 Unicode (16+ bits)

 Tens of thousands of characters

 Nearly every written language known
Q4



String Formatting

 The % operator is overloaded

Multiple meanings depending on types of operands

 What does it mean for numbers?

 Answer:  remainder

 Other meaning for <string> % <tuple>

 Plug values from tuple into ―slots‖ in string

 Slots given by format specifiers

 Each format specifier begins with % and ends with a letter

 Length of tuple must match number of slots in the string



Format Specifiers

 Syntax:

 %<width>.<precision><typeChar>

 Width gives total spaces to use

 0 (or width omitted) means as many as needed

 0n means pad with leading 0s to n total spaces

 n without the zero means pad with leading spaces instead of zeroes

 -n means ―left justify‖ in the n spaces

 Precision gives digits after decimal point, rounding if needed.

 TypeChar is:

 f for float, s for string, or d for decimal(i.e., int)

 Note: this returns a string that we can print

 Or write to a file using write(string),

as you’ll do on today’s homework Q5

However, rounding can be flaky

due to underlying base 2: 
>>> print '%.2f' % 2.375

2.38

>>> print '%.2f' % 2.385

2.38

A typical use of formatting 

specifiers is to produce tabular 

output.  See your homework 
for an example.



input() and raw_input() are related 

through the eval function

 input(…) – evaluates the input and returns the result of the 

evaluation

 User enters 4.56 → floating point number is returned

 User enters 68 → integer number is returned

 User enters ―88‖ → string ―88‖ is returned

 User enters x → value of variable x is returned (error if x is not defined)

 raw_input(…) – returns the input as a string

 User enters 4.56 → string ―4.56‖ is returned

 User enters x → string ―x‖ is returned

 eval(<string>) – evaluates the given string as if it were a Python 

expression

 x,y = 7,5

eval(“3 + 4”) → 7

eval(“x * y”) → 35
Q6-7

input(…)

is equivalent to  
eval(raw_input(…))



File Processing

 Manipulating data stored on disk

 Key steps:

Open file

 For reading or writing

 Associates file on disk with a file variable in program

Manipulate file with operations on the file variable

 Read or write information

 Close file

 Causes final ―bookkeeping‖ to happen

Q8

Note:  disks are slow, so changes to the file are often kept in a buffer

in memory until we close the file or otherwise “flush” the buffer.



File Writing in Python

 Open file:

 Syntax: <filevar> = open(<name>, <mode>)

 Example: outFile = open('average.txt', 'w')

 Replaces contents!

 Write to file:

 Syntax: <filevar>.write(<string>)

 Example:  outFile.write(“And this isn't my nose.\
It's a false one.”)

 Close file:

 Syntax: <filevar>.close()

 Example: outFile.close()



File Reading in Python

 Open file: inFile = open('grades.txt', 'r')

 Read file:

 <filevar>.read() Returns one BIG string

 <filevar>.readline() Returns next line, including \n

 <filevar>.readlines() Returns BIG list of strings, 1 per line

 for <lineVar> in <filevar>   Iterates over lines efficiently

 Close file: inFile.close()

 Exercise:  write a program called filePractice.py that:

 Asks the user for 3 phrases and writes the 3 phrases onto file ―output.txt‖, 

each phrase on its own line

 Asks the user for a filename and then prints all the lines of the file 4 times, 

once for each of the 4 read-styles listed above



A ―Big‖ Difference

 Consider:

 inFile = open ('grades.txt', 'r„)

for line in inFile.readlines():

# process line

inFile.close()

 inFile = open ('grades.txt', 'r„)

for line in inFile:

# process line

inFile.close()

 Which takes the least memory?

 Answer:  the second approach, because in it Python reads lines into 

memory one at a time and only as needed instead of all at once, as in 

the first approach

Q9



 Write a program called goTest.py that:

 Asks the user for a distance, in inches

Goes that many inches using the go function and an 

appropriate sleep

 Prints how many inches the robot thinks it went using

robot.getSensor(―DISTANCE‖)

 Repeats the above using the go function and an 

appropriate waitDistance

 In both cases, also measure (with a ruler) how many 

inches the robot went.  See how accurate your robot is 

for 3 inches, 6 inches, 24 inches.



Practice

 Hand in quiz

 Do the 

 Start working on HW5

 On Angel

 Lessons  Homework  Homework 5 

Homework 5 Instructions

Q10


