* An example of a software development process:
the day-month to day-of-year problem

* String operations

* File operations

* Exercises on the above

* Robotics: motion commands as an example of the
input-compute-output pattern

Please sit with your robot partner

® Well, sit with your robotics partner (presumably your partner is not a robot...)

Outline

Lists — review
range function for creating a List
Looping through a List
Applying the sum function to a List

An example of a software development process:

the day-month to day-of-year problem
Strings
How strings are represented: the ord and chr functions

Encodings: ASCII, extended ASCII, Unicode

Formatting with the % operator
input versus raw_input

File operations: open, close, read, write

01

Day, Month = Day of year

When calculating the amount of money required to
pay off a loan, banks often need to know what the
"ordinal value" of a particular date is

For example, March 6 is the 65th day of the year (in a
non-leap year)

We need a program to calculate the day of the
year when given a particular month and day

The Software Development Process

_
Analyze the Problem
Maintain the Program Determine Specifications
Test /Debug the Program Create a Design

N 4

Implement the Design

Phases of Software Development
-

1 Analyze: figure out exactly what the problem to be solved is
Need to be able to find the day of the year, when given month and date.

01 Specify: WHAT will program do?2 NOT HOW.

User provides month (three letters, lowercase) and day of month (integer).
Program calculates and prints the day of the year. Not required to work for

leap years.
1 Design: SKETCH how your program will do its work, design the
algorithm

Use two parallel lists, one of month names, one of month lengths. Once we get
the month and day, use a loop to add up the lengths of the previous months.

o Implement: translate design to computer language

-1 Test/debug: See if it works as expected.

bug == error, debug == find and fix errors

o Maintain: continue developing in response to needs of users

String Representation

Computer stores Os and Ts
These O’s and 1’s are called bits

Numbers are stored as sequences of Os and 1s
Fixed-length sequences for int and float

Arbitrarily long sequences for long

What about texit?e

Text is also stored as sequences of Os and 1s
Each character has a code number

Strings are sequences of characters

So Strings are stored as sequences of code numbers

Does it matter what code numbers we use?

No, as long as we’re consistent — see next slide

Translating:

>>>
82
>>>
114
>>>
1 r 1
>>>

>>>
' q \
>>>
32
>>>
36

ord ("R")
ord("r")
chr (114)
chr (115)
chr (113)
ord (" ')

ord('S$’)

02-3

Consistent String Encodings

Needed to share data between computers

Examples:

ASCll—American Standard Code for Info. Interchange
“Ask-ee”
Standard US keyboard characters plus “control codes”

8 bits per character

Extended ASCII encodings (8 bits)

Add various international characters

Unicode (16+ bits)

Tens of thousands of characters

Nearly every written language known

Q4

String Formatting

The % operator is

Multiple meanings depending on types of operands
What does it mean for numbers?

Answer: remainder
Other meaning for <string> % <tuple>

Plug values from tuple into “slots” in string

Slots given by

Each format specifier begins with % and ends with a letter

Length of tuple must match number of slots in the string

Format Specifiers

Syntax:
%<width>.<precision><typeChar>
Width gives total spaces to use

O (or width omitted) means as many as needed

On means pad with leading Os to n total spaces

However, rounding can be flaky
due to underlying base 2:

>>> print '$.2f' % 2.375
2.38

>>> print '$.2f' % 2.385
2.38

n without the zero means pad with leading spaces instead of zeroes

-n means “left justify” in the n spaces
Precision gives digits after decimal point,

TypeChar is:

for float, s for string, or d for decimal(i.e., int)

Note: this returns a string that we can print

Or write to a file using write (string),
as you’ll do on today’s homework

A typical use of formatting
specifiers is to produce tabular
output. See your homework
for an example.

Q5

input() and raw_input() are related
through the eval function

input(...) — evaluates the input and returns the result of the
evaluation

User enters 4.56 — floating point number is returned

User enters 68 — integer number is returned

User enters “88” — string “88” is returned

User enters x — value of variable x is returned (error if x is not defined)

raw_input(...) — returns the input as a string

User enters 4.56 — string “4.56” is returned

User enters x — string “x” is returned

eval(<string>) — evaluates the given string as if it were a Python
expression

x,y = 7,5 is equivalent to
eval (V'3 + 4”) — 7
eval(“x * y//) — 35 Q6'7

File Processing
N

71 Manipulating data stored on disk
11 Key steps:
0 Open file
® For reading or writing
m Associates file on disk with a file variable in program
o Manipulate file with operations on the file variable
m Read or wrife information
o Close file

m Causes final “bookkeeping” to happen

e e

File Writing in Python

-1
1 Open file:
o Syntax: <filevar> = open(<name>, <mode>)
O Example: ocutFile = open('average.txt', 'w')
® Replaces contents!
1 Write to file:
o Syntax: <filevar>.write(<string>)

O Example: outFile.write (“And this isn't my nose.\
It's a false one.”)

1 Close file:

0 Syntax: <filevar>.close()

o Example: cutFile.close ()

File Reading in Python
B

1 Open file: inFile = open('grades.txt', 'zr')

1 Read file:

0 <filevar>.read() Returns one BIG string
0 <filevar>.readline() Returns next line, including \n
0 <filevar>.readlines() Returns BIG list of strings, 1 per line

0 for <lineVar> in <filevar> lterates over lines efficiently
1 Close file: inFile.close()

01 Exercise: write a program called filePractice.py that:

0 Asks the user for 3 phrases and writes the 3 phrases onto file “output.txt”,
each phrase on its own line

0 Asks the user for a filename and then prints all the lines of the file 4 times,
once for each of the 4 read-styles listed above

A “Big” Difference

Consider:

inFile = open ('grades.txt', 'r‘)
for line in inFile.readlines():

process line
inFile.close()

inFile = open ('grades.txt', 'r‘)
for line in inFile:

process line
inFile.close()

Which takes the least memory?

Answer: the second approach, because in it Python reads lines into
memory one at a time and only as needed instead of all at once, as in
the first approach

Q9

Write a program called goTest.py that:
Asks the user for a distance, in inches

Goes that many inches using the go function and an
appropriate sleep

Prints how many inches the robot thinks it went using
robot.getSensor(“DISTANCE”)
Repeats the above using the go function and an

appropriate waitDistance

In both cases, also measure (with a ruler) how many
inches the robot went. See how accurate your robot is
for 3 inches, 6 inches, 24 inches.

Practice

Hand in quiz
Do the
Start working on HWJ5

On Angel

Lessons 2 Homework 2 Homework 5 =2
Homework 5 Instructions

Q10

