
CSSE 120 – Rose-Hulman Institute of Technology

• Variables and Assignment

• Loops, including the Accumulation Pattern

• Types

• Robotics: motion commands as an example

of the input-compute-output pattern

Please sit with a NEW partner (not your robot partner)

Check your IDLE Configuration

 Verify IDLE shortcut:

 Launch IDLE (Start  All Programs  Python 2.6  IDLE)

 In IDLE, choose File  Open…

 What directory does the ―Open Dialog‖ start in?

 CSSE 120 or another good place? Excellent, help a neighbor in need

 Python26? Follow step 4 (and ONLY step 4) at

 http://www.rose-hulman.edu/class/csse/resources/Python/installation.htm

 Set IDLE to always do a Save when you choose Run

 In IDLE, choose the Options menu, then Configure IDLE…

 Select the General tab

 Select the ―No prompt‖ radio button under Autosave Preferences

http://www.rose-hulman.edu/class/csse/resources/Python/installation.htm
http://www.rose-hulman.edu/class/csse/resources/Python/installation.htm
http://www.rose-hulman.edu/class/csse/resources/Python/installation.htm

Review: The Python Interpreter

 What it does:

 Takes in Python commands

 Converts them to 0s and 1s for the ―CPU‖

Gets answer back from ―CPU‖

 How we’ll use it:

 IDLE’s Python shell—lets us ―talk with‖ the interpreter

 >>> is the Python prompt

 Saving and running a module in a file

Review: Saving Programs

 IDLE’s interactive Program Shell is good for trying out

snippets of code

 But it is annoying to keep retyping, so …

 Can save definitions in separate files

 Called modules or scripts

 In IDLE, use File  New Window, include the .py when saving

 Can edit in any text editor (like Notepad++), or …

 Can use an integrated development environment(IDE)

 Recognizes what you type

 Tries to help

 Examples: IDLE, Eclipse

Review: Running Programs

 Like typing in all the lines, but easier

 One way: Open file in IDLE and run it

 File  Open…, then select the file

 Run  Run Module (or simply F5)

 Output appears in the interactive Program Shell

 Another way: type import <module> at prompt

 Replace <module> with name of module, don’t type the ―.py‖

 Example: import chaos

 Runs the code in the imported file

 Note the .pyc files in your Python folder

 A partially translated version of your file, called byte code

 Interpreter saves this to make loading faster next time

 Yet another way: double-click the .py or .pyc file Q1-2

This example assumes that you

have a file named chaos.py in

your default Python folder

Outline of today’s session:

chapter 2, some of chapter 3

 Identifiers, Expressions

 Syntax (form) versus Semantics (meaning)

 print statements

 Variables and assignments

 Lists and the range function

 Definite loops, counting loops, the accumulator pattern

 Basic types: numbers (int and float)

 Math library

 The accumulator pattern

 Robots: motion commands as an example of the input-

compute-output pattern

Identifiers: Names in Programs

 Uses of identifiers so far…

Modules

 Functions

 Variables

 Classes

 Rules for identifiers in Python

 Start with a letter or _ (the ―underscore character‖)

 Followed by any sequence of letters, numbers, or _

 Case matters! spam ≠ Spam ≠ sPam ≠ SPAM

 Choose descriptive names!
Q3a-f, Q4

Reserved Words

 Built-in names

 Can’t use as regular identifiers

 Python reserved words:

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass with

def finally in print yield

Q3g

Be careful not to redefine function

names accidentally

 Examples:

 len – used to find the number of items in a sequence

 max

min

 float – used to convert a number to a floating point

number

 sleep – pauses the program for a specified length of

time (in the time module)

 sqrt – square roots (in the math module)

Q5

Expressions

 Fragments of code that produce or calculate new

data values

 Examples

 Literals: indicate a specific value

 Identifiers: evaluate to their assigned value

 Compound expressions using operators like:

+ - * / ** %

 Can use parentheses to group

Q6-7

Syntax versus Semantics

print (output) statements

 Programming languages have precise rules for:

 Syntax (form)

 Semantics (meaning)

 Computer scientists use meta-languages to describe these rules

 Example:

 Syntax:

 print

 print <expr>

 print <expr>, <expr>, …, <expr>

 print <expr>, <expr>, …, <expr>,

 Semantics?

 Is the following allowed? print “The answer is:”, 7 * 3 * 2

A ―slot‖ to be filled with any expression

Repeat indefinitely

Note: trailing comma

Q8-10

Variables and Assignments

 Variable

 Identifier that stores a value

 A value must be assigned to the variable

 <variable> = <expr> (syntax)

 Assignment

 Process of giving a value to a variable

 Python uses = (equal sign, read as ―gets‖ or ―becomes‖)

 x = 0.25

 x = 3.9 * x * (1 – x)

Variables as sticky notes

10 x = 10x

11 x = x + 1

y y = x

Assignment Statements

1. Simple assignments

 <variable> = <expr>

2. Input assignments

 <variable> = input(<prompt>)

 temp = input(―Enter high temperature for today‖)

3. Compound assignments

 <var>op=<expr> means <var> = <var> op <expr>

where op is one of: + - * / %

 Example: total += 5 is the same as total = total + 5

4. Simultaneous assignments

 <var>, <var>, …, <var> = <expr>, <expr>, …, <expr>

 sum, diff = x + y, x – y x, y = y, x Q11-13

Sequences

 Python has two kinds of sequences:

 Lists, for example:

 [2, 3, 5, 7]

 [―My‖, ―dog‖, ―has‖, ―fleas‖]

 Tuples, for example

 (3, -8)

 (―month‖, 10)

 We will focus on lists, which can be generated by the

range function:

 range(<expr>)

 range(<expr>, <expr>)

 range(<expr>, <expr>, <expr>)
Q14

Definite loops

 Definition

 Loop: a control structure for executing a portion of a

program multiple times

 Definite: Python knows how many times to iterate the

body of the loop

 Syntax for a definite (for) loop:

for <var> in <sequence> :

<body>

 Semantics for a definite (for) loop:

 Executes <body> once for every element of

<sequence>, with <var> set to that element

Examples using loops

>>> for i in [0, 1, 2, 3, 4, 5]:

print 2**i

>>> for k in range(6):

print k, 2**k

>>> for b in ["John", "Paul", "George", "Ringo"]:

print b, " was a Beatle“

>>> for i in range(15, 2, -1):

print i,

print

Loop index

Loop sequence

Loop body

Flowchart for a for loop

More items in

<sequence>

<var> = next item

<body>

yes

no

Trace this by hand:
sum = 0

for k in range(4):

sum = sum + k

print a

An accumulator

combines parts of a

list using looping.

We’ll use the above

accumulator pattern

often this term!

Q15

Another loop with an accumulator

 Find the sum of the positive odd numbers that are

≤ 13

 Do it together as a class, in IDLE

Data types

 Data

 Information stored and manipulated on a computer

 Different kinds of data will be stored and manipulated

in different ways

 Data type

 A particular way of interpreting bits

 Determines the possible values an item can have

 Determines the operations supported on items

Numeric data types

print "Please enter the count of the given kind of

coin."

quarters = input("Quarters: ")

dimes = input("Dimes: ")

nickels = input("Nickels: ")

pennies = input("Pennies: ")

total = quarters * 0.25 + dimes * 0.10 + nickels *

.05 + pennies * .01

print "The total value of your change is $", total

print "The total value of your change is $%0.2f" % total

Finding the Type of Data

 Built-in function type(<expr>) returns the data type of

any value

 Find the types of: 3, 3.0, -32, 64.0, ―Shrubbery‖, [2, 3]

 Why do we need different numerical types?

Operations on int are more efficient

 Compute algorithms for operations on int are simple and fast

 Counting requires int

 Floats provide approximate values when we need real

numbers

Q16-17

Built-in Help

 dir()

 dir(<identifier>)

 help(<identifier>)

 To see which functions are built-in, type:

dir(__builtins__)

 To see how to use them, type:

help(__builtins__)

Q18

There are TWO

underscores before and
after the word builtins

Some Numeric Operations

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

% Remainder

// Do integer division (even on floats)

Function Operation

abs(x) Absolute value of x

round(x, y) Round x to y decimal places

int(x) Convert x to the int data type

float(x) Convert x to the float data type

Math library functions

Quadratic formula to find real roots for quadratic

equations of the form ax2 + bx +c = 0

 Solution:

 Write out the Python expression for the first

formula.

 If you have time, test it IDLE

a

acbb
x

2

42

Q19

a

acbb
x

2

42

More math library components

Python Mathematics English

pi π Approximation of pi

e e Approximation of e

sin(x) sin x The sine of x

cos(x) cos x The cosine of x

tan(x) tan x The tangent of x

atan2(y,x) tan-1 (y,x) Arc tangent (inverse tangent)

computes the angle formed by the

positive x-axis and the ray from

(0,0) to (x,y)

log(x) ln x The natural (base e) log of x

log10(x) log10x The base 10 log of x

exp(x) ex The exponential of x Q20

EXPLORING WITH

PYTHON

Pair Programming

 Working in pairs on a single computer

One person, the driver, uses the keyboard

 The other person, the navigator, watches, thinks, and

takes notes

 For hard (or new) problems, this technique

 Reduces number of errors

 Saves time in the long run

 Works best when partners have similar skill level

 If not, then student with most experience should

navigate, while the other student drives.

Food tasting

 Suppose you are at food tasting show and are

tasting 5 different dishes

 Sampling the dishes in different orders may affect

how good they taste

 If you want to try out every possible ordering, how

many different orders would there be?

 That number is the factorial of 5

 n! = n (n – 1) (n – 2) … (1)

 What type of problem is this?

Accumulating results: factorial

 Work with a partner (pick a driver and navigator)

 Write a Python program called factorial.py that

 Prompts the user for an integer

 Calculates the factorial of the integer

 n! = n (n – 1) (n – 2) … (1)

 Does not use the built-in math.factorial function

Outputs the result to the screen

 Driver: email the code to your partner (so each has the

program for the open-computer parts of exams)

 Submit one copy of program with both student's names in a

program comment.

 Submit it in ANGEL to the Lessons > Homework > Homework 3

> Factorial Drop Box

Graphics Exercise with loops

 Trade roles with partner—new driver, new navigator

 Write a program called barChart.py that draws a figure

like this where the lengths of the lines increase by a

constant amount

 Use your previous graphics program as a model of how to

import graphics functions, create a

window, etc.

 You may want to use

variables to hold current

x-coordinate and current line length,

and change the values of those

variables each time through the loop

 Homework 3 > Bar Chart Drop Box

