
CSSE 120 – Fundamentals of Software Development

Writing simple programs
• The input-compute-output pattern

• Eclipse – An Integrated

Development Environment (IDE)

• Subversion (SVN) for version

control

Functions
• Writing functions

• Calling functions

• Functions with

parameters

• The main function

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

• From your bookmark, or from the Lessons tab in Angel

5. Open the Slides for today if you wish

Session 2

Announcements

 Homework assignments:

 Reading and the Reading Quiz part of each homework

assignment is due at the start of the next class

 Other parts (typically, programming) always get at least

48 hours, so homework assigned Monday is special.

2

Day assigned
Reading quizzes

due (next class)

Other parts of assignments due

(at least 48 hours)

Monday Tuesday
Wednesday, at the same time of

day that your class meetings begin

Tuesday Thursday Thursday

Thursday Monday Monday
Q1

Show Off Some Cool Graphics

 Who would like me to show off their work?

 Otherwise I’ll pick some programs at random

 What other kinds of programs would you like to

write?

3

Q2

Outline

 Answer questions & review concepts from Session 1

 Tools for software development:

 Integrated Development Environment (IDE) – Eclipse

 Version control – Subversion (SVN)

 Writing simple programs

 Functions

 The main function

 The input-compute-output pattern

 Examples: chaos, temperature, kph

4

Integrated Development Environments (IDEs)

 What are they?

 Why use one?

 Our IDE  Eclipse

 Why we chose it

 Basic concepts in Eclipse

 Workspace, Workbench

 Files, folders, projects

 Views, editors, perspectives

The next slides

address the listed

points

IDEs  What are they?

Type and change

code (editors)

An IDE is an application that makes

it easier to develop software.

They try to make it easy to:

See output

See the outline of

a chunk of code

See the outline of

the entire project

Compile, run,

debug, document

IDEs  Why use one?

Type and change

code (editors)

An IDE is an application that makes

it easier to develop software.

They try to make it easy to:

See output

See the outline of

a chunk of code

See the outline of

the entire project

Compile, run,

debug, document

Eclipse is:

• Powerful -- everything here and more

• Easy to use

• Free and open-source

• An IDE for any language, not just Python

• What our upper-class students told us to use!

Basic concepts in Eclipse

 Workspace  where your projects are stored on your
computer

 Project  a collection of files, organized in folders,
that includes:
 Source code (the code that you write)

 Compiled code (what your source code is translated into, for
the machine to run)

 Design documents

 Documentation

 Tests
 And more that you will learn about over time

 Workbench  what we saw on the previous slide, that
is, the tool in which you do your software development

Special things to do ONCE – for your

first Eclipse session only

 I will demo the most common case – just follow my

demo if your setup is ―the usual‖.

 If your setup is different, see

 http://www.rose-

hulman.edu/class/csse/resources/Eclipse/installation.htm

 Here is a summary of what I will lead you through:

 Open Eclipse

 Set your workspace [careful, pick the one we set up for you]

 Switch to the Pydev perspective

9

http://www.rose-hulman.edu/class/csse/resources/Eclipse/installation.htm
http://www.rose-hulman.edu/class/csse/resources/Eclipse/installation.htm
http://www.rose-hulman.edu/class/csse/resources/Eclipse/installation.htm

Your first Eclipse program

 Your instructor will lead you through your creation of

your first Python project in Eclipse. Here is a brief

summary:

1. File  New  Pydev Project

2. File  New  Pydev Module

3. Type print("hello world")

4. Run the program

5. Type a few more print statements, including one that

is wrong.

 See where the error message appears and how clicking on

it brings you to the offending line.

10

Views, editors, perspectives

This view is controlled by an

editor that lets you make

changes to the file

Tabbed views (Problems, Console)

A view that lets

you navigate

the entire

project

(Package

Explorer)

A view that shows

the outline of the

module being

examined (Outline

View)

Tabbed views of the source code of this project

A perspective displays a set of views and editors

that are appropriate for the task at hand.

Perspectives include: PyDev, Java and lots more

This is the

PyDev

perspective

but just a

button click

brings us to

another

Eclipse in a Nutshell

 Workspace  where your projects are stored on your

computer

 Project  a collection of files, organized in folders,

that includes:

 Source code and Compiled code and more

 Workbench  the tool in which to work

 It has perspectives which organize the views and editors

that you use

 View  a "window within the window"

 displays code, output, project contents, debugging info,

etc.

Software Engineering Tools

 The computer is a powerful tool

 We can use it to make software development easier

and less error prone!

 Some software engineering tools:

 IDEs, like Eclipse and IDLE

 Version Control Systems, like Subversion

 Testing frameworks, like JUnit

 Diagramming applications, like UMLet, Violet and Visio

 Modeling languages, like Alloy, Z, and JML

 Task management trackers like TRAC

Version Control Systems

 Store ―snapshots‖ of all the changes to a project over time

 Benefits:

 Multiple users

 Multiple users can share work on a project

 Record who made what changes to a project

 Provide help in resolving conflicts between what the multiple users do

 Maintain multiple different versions of a project simultaneously

 Logging and Backups

 Act as a ―global undo‖ to whatever version you want to go back to

 Maintain a log of the changes made

 Can simplify debugging

 Drop boxes are history!

 Turn in programming projects

 Get it back with comments from the grader embedded in the code

Our Version Control System

 Subversion, sometimes called SVN

 A free, open-source application

 Lots of tool support available

 Works on all major computing platforms

 TortoiseSVN for version control in Windows Explorer

 Subclipse for version control inside Eclipse

Version Control Terms

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Repository: the

copy of your

data on the

server, includes

all past versions
Working copy:

the current

version of your

data on your

computer

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Q3

Version Control Steps—Check Out

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

…
Working

Copy

Working

Copy

Working

Copy

Working

Copy

Check out:

grab a new

working copy

from the

repository

Q4a

Version Control Steps—Edit

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Edit: make

independent

changes to a

working copy

Version Control Steps—Commit

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Commit: send

a snapshot of

changes to

the repository

Q4b

Version Control Steps—Update

Subversion Server

Alice's

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working

Copy

Working

Copy

Working

Copy

Working

Copy …

Update: make

working copy

reflect

changes from

repository

Q4c

The Version Control Cycle

Check

Out

Edit Update

Commit Update

Update and

Commit often!

Check out today’s exercise

 Go to the SVN Repository view at the bottom of the

workbench

 If it is not there,

WindowShow ViewOtherSVN RepositoriesOK

 Browse SVN Repository view for

 02-InputComputeOutput project

 Right-click it, and choose Checkout

 Accept options as presented

 Expand the 02-InputComputeOutput that appears in

Package Explorer (on the left-hand-side)

 Browse the modules. We will start with hello.py (next slide)

If you're stuck, get help and see http://www.rose-

hulman.edu/class/csse/resources/Subclipse/installation.htm

http://www.rose-hulman.edu/class/csse/resources/Subclipse/installation.htm
http://www.rose-hulman.edu/class/csse/resources/Subclipse/installation.htm
http://www.rose-hulman.edu/class/csse/resources/Subclipse/installation.htm

Functions

 Examine your hello.py module in your Eclipse

project.

 Functions

 Named sequences of statements

 Can invoke them—make them run

 Can take parameters—changeable parts

23

Parts of a Function Definition
24

>>> def hello():

 print("Hello“)

 print("I'd like to complain about this parrot“)

Defining a function

called ―hello‖

Indenting tells interpreter

that these lines are part of

the hello function

Blank line tells interpreter

that we’re done defining

the hello function

Defining vs. Invoking

 Defining a function says what the function should do

 Invoking (calling) a function makes that happen

 Parentheses tell the interpreter to invoke the function

 Later we’ll define functions with parameters

25

>>> hello()

Hello

I'd like to complain about this parrot

Q5

Identifiers: Names in Programs

 Uses of identifiers so far…

 Modules

 Functions

 Variables

 Rules for identifiers in Python

 Start with a letter or _ (the ―underscore character‖)

 Followed by any sequence of letters, numbers, or _

 Case matters! spam ≠ Spam ≠ sPam ≠ SPAM

 Choose descriptive names!

26

Q6a

Reserved Words

 Built-in names

 Can’t use as regular identifiers

 Python reserved words:

27

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass with

def finally in print yield

Q6b

Be careful not to redefine function

names accidentally

 Examples:

 len – used to find the number of items in a sequence

 max

 min

 float – used to convert a number to a floating point

number

28

Expressions

 Fragments of code that produce or calculate new

data values

 Examples

 Literals: indicate a specific value

 Identifiers: evaluate to their assigned value

 Compound expressions using operators: +, -, *, /, **

 Can use parentheses to group

29

Q7-8

Programming Languages

 Have precise rules for:

 Syntax (form)

 Semantics (meaning)

 Computer scientists use meta-languages to describe

these rules

 Example…

30

Output Statements

 Syntax:

 print()

 print(<expr>)

 print(<expr>, <expr>, …, <expr>)

 print(<expr>, <expr>, …, <expr>,)

 Semantics?

 Is this allowed?

 print("The answer is:", 7 * 3 * 2)

31

A ―slot‖ to be filled with any expression

Repeat indefinitely

Note: trailing comma

Q9

Basic program structure

The input-compute-output pattern

 Examine the chaos.py module in your Eclipse project.

 Do the TODO’s in it.

 I’ll demo some of them with you.

32

A simple program that defines and

invokes a function called main()
33

A simple program illustrating chaotic behavior.

From Zelle, 1.6

def main():

 print "This program shows a chaotic function"

 x = float(input("Enter a number: "))

 for i in range(10):

 x = 3.9 * x * (1 - x)

 print(x)

main()

comments

Define a function called ―main‖

A variable called x

An input assignment

A loop

The loop’s body

Assignment statement

Invoke function main

Q10-14

The Software Development Process
34

Analyze the Problem

Determine Specifications

Create a Design

Implement the Design

Test/Debug the Program

Maintain the Program

Q15

More practice at the

input-compute-output pattern

 Examine the temperature.py module in your Eclipse

project.

 Do the TODO’s in it.

 I’ll demo some of them with you.

35

Road Trip!
36

The Software Development Process
37

Analyze the Problem

Determine Specifications

Create a Design

Implement the Design

Test/Debug the Program

Maintain the Program

Q16

Homework

 Hand in in-class Quiz

 Begin Homework

 Find it from the Schedule page

 Reading and ANGEL quiz due Tuesday.

 Rest (programming part) due Wednesday at the time

of your regular class session.

39

