
CSSE 120 DAY 1

Introduction to Software Development - Robotics

As you arrive

• Start up your computer and plug it in.

• Find the course web site, by visiting:

• www.rose-hulman.edu/class

• Then csse

• Then csse120

• Then 201110 for Delvin’s sections

 201110robotics for David’s sections

• Bookmark that course web site

Outline

 Introductions: students and instructor

 Administrative details, tour of web resources

 Course background:

 What is computer science? Software development?

 Hands-on introduction to Python

 Including zellegraphics

 Today in the IDLE interactive shell, next session in Eclipse

Roll Call & Introductions

 Name (nickname)

 Hometown

 Where you live on (or off) campus

 Something about you that most people in the room

don't know

Q1-2

This means you should be answering
Questions #1 and 2 on the quiz.

Administrivia – Syllabus

 Course web site (bookmark it now):

 www.rose-hulman.edu/class/csse/csse120, then:

 201110 for Delvin’s sections

 201110robotics for David’s sections

 Syllabus – find it now (from course web site)

 Student assistants in F-217

 Sunday through Thursday evenings 7 p.m. to 11 p.m.

 Weekdays 7th to 9th periods

 Email to

 csse120-staff@rose-hulman.edu

 Grading plan, attendance policy

 Late work policy, honesty policy
Q3-5

Consider routinely doing your
homework in F-217 evenings.

No background in
programming or
robotics is assumed.

http://www.rose-hulman.edu/class/csse/csse120/
http://www.rose-hulman.edu/class/csse/csse120/
http://www.rose-hulman.edu/class/csse/csse120/
http://www.rose-hulman.edu/class/csse/csse120/20110/
http://www.rose-hulman.edu/class/csse/csse120/20110robotics
http://www.rose-hulman.edu/class/csse/resources/Labs/coverage.htm
http://www.rose-hulman.edu/class/csse/resources/Labs/coverage.htm
http://www.rose-hulman.edu/class/csse/resources/Labs/coverage.htm

Administrivia – Schedule Page

 Course Schedule – find it now (from course web site)

 Homework 1 due

at start of next class

 Reading and Angel quiz on it

 Programming part

 Turn in the programming part via Subclipse (details next session)

 Homework 1 is an exception: follow its instructions re Angel drop box

 These slides – find them now (from Course Schedule)

 Evening exams:

 Tuesday, September 28, 7 to 9 p.m.

 Thursday, October 21, 7 to 9 p.m.

Q6-9

Exception: In the future,
for HW assigned Monday:
• reading quiz is due Tuesday
• rest is not due until
 Wed. at start-of-class-time

Mark your calendar!
No regular class those days.

Administrivia, Angel

 Angel ~ Lessons

 Attendance Widget

 Do it now, and at the beginning of each session.

 Homework

 Where you take your Angel quizzes on the reading

 Don’t get hung up on the reading. If necessary, skim.

Always do the Angel quiz (you can take it up to 4 times).

 Drop Boxes when needed

 For homework 1 and occasionally thereafter.

 Anonymous Suggestions Box

Q10

How to succeed in CSSE120

 Read the textbook before each class

 Take the ANGEL quiz over the reading

 If you don't do well, read again and retake quiz

 Ask questions on what you don't understand

 Try out the code if that is helpful to you

 Start early on the programming assignments

 Don't be satisfied with merely getting your code to “work.”

 Be sure you understand it. If you don't, ask!

 Work and learn with other students

 But don't let them do your work for you

 Take advantage of instructor office hours

and student assistant lab hours

http://www.rose-hulman.edu/class/csse/resources/Labs/coverage.htm

What is Computer Science (CS)?

 The work of computer scientists falls into three categories:

 designing and building software;

 developing effective ways to solve computing problems, such as:

 storing information in databases,

 sending data over networks or

 providing new approaches to security problems; and

 devising new and better ways of using computers and addressing

particular challenges in areas such as

 robotics,

 computer vision, or

 digital forensics.

  from the Association for Computing Machinery (ACM)
Q11-12

this course focuses on this

http://computingcareers.acm.org/?page_id=8

What is software development?

 Software development includes:

 Market research

 Gathering requirements for the proposed business solution

 Analyzing the problem

 Devising a plan or design

for the software-based solution

 Implementation (coding) of the software

 Bug fixing

 Testing the software

 Maintenance

  from Wikipedia, Software Development

this course
focuses on these

http://en.wikipedia.org/wiki/Software_development

What is a program?

A programming language?

 Program

 Detailed set of instructions

 Step by step

 Meant to be executed by a computer

 A programming language specifies the:

 Syntax (form), and

 Semantics (meaning)

of legal statements in the language

 There are thousands of computer languages.

 We will use Python because:

 It is powerful: powerful programming primitives and a huge set of libraries

 It has a gentle learning curve; you will start using it today! Q13

See Wikipedia’s History of
Programming Languages
for a timeline of
programming languages.

Python was introduced in
1991.

Its predecessors include
ABC, Algol 68, Icon and
Modula-3.

http://en.wikipedia.org/wiki/History_of_programming_languages
http://en.wikipedia.org/wiki/History_of_programming_languages

What is an Algorithm?

 What is an Algorithm?

 Step-by-step procedure for accomplishing something

 Presented at the right level of detail (and in the right

language) for the one who will execute it

 Analogy – Bake a cake

 Instructions for an experienced cook

 Instructions for a 7-year-old

 Instructions in French

 Algorithm for a very simple task:

 For a student to execute

 For a robot to execute

Four important
Computer Science skills:
• Design algorithms
• Analyze algorithms
• Evaluate algorithms
• Adapt algorithms

Q14

Human Languages vs.

Programming Languages

 Ambiguous vs. very precise

 Syntax (form) must exactly match …

 CaSe MAtterS

 Semantics (meaning)

 Translation

 High-level language (Maple, Java, Python, C) to

 Low-level language (machine language)

 Compiler, interpreter

http://xkcd.com/353/

If you had any trouble
confirming that your
Python 3 setup was
correct (per email we
sent you), or if you think
that it might not be
correct, ask an assistant
for help now with these
instructions for installing
Python.

http://www.rose-hulman.edu/class/csse/resources/Python/installation.html
http://www.rose-hulman.edu/class/csse/resources/Python/installation.html

PYTHON:

A PROGRAMMING

LANGUAGE!

• We will see a quick view of Python programming today, but we
will examine all of today’s ideas in more detail in forthcoming
sessions.

• Follow me as I demonstrate how to program in a Python Shell:

• Start  All programs  Python 3.1  IDLE (Python GUI)
• Make sure that when it opens, it says Python 3.1.2
• Follow me. You’ll get a summary and transcript later.

• Get an assistant to help if you have any troubles
during ANY of this “live coding” session.

Key ideas from live coding session:
evaluation in the interpreter, variables (case matters!), assignment

 In the interactive Python shell (at the >>> prompt), try:

 3 + 4

 3 + 4 * 2

 width = 4

 height = 5

 width

 width, height

 width = width + 2

 width

 Width

The interpreter evaluates the expression
that it is given and shows the result.
Note the use of “precedence”.

Assignment: read it
as “width GETS 4”

Terrible mathematics, but
common programming paradigm:
increment width by 2

Case matters. Try to
decipher the error message.

Q15

Key ideas from live coding session:
defining functions, calling functions

 In the interactive Python shell (at the >>> prompt), try:

 triangleArea = width * height / 2

 triangleArea

 def rectangleArea(width, height):

 return width * height

 area1 = rectangleArea(6, 8)

 area2 = rectangleArea(9, 3)

 area1

 area2

 width

 triangleArea

Defining a function.
Note the colon,
subsequent
indentation, and
blank line after the
indented line(s).

Calling a function
(twice in this example)

Note the difference between triangleArea
(a variable) and rectangleArea (a function).

Note that the parameter width in the definition of
the function rectangleArea is completely
independent of the variable width defined earlier. Q16

Indentation
matters in
Python!
(not typical
of other
languages)

Key ideas from live coding session:
importing modules

 In the interactive Python shell (at the >>> prompt), try:

 abs(-7)

 sin(pi/3)

 You’ll get an error message

from the above

 import math

 math.sin(math.pi / 3)

 from math import *

 sin(pi/3)

Some functions are built-in.

Do you see the difference between
 import X

and
 from X import *

Use the latter with caution.

Some aren’t. Importing module X
lets you use X.name to refer to
things defined in module X

Q17

Key ideas from live coding session:
strings and comments

 In the interactive Python shell (at the >>> prompt), try:

 “hello”

 „hello‟

 width + height

 “width” + “height”

 “width” * height

 “width” * “height”

 # This is a comment.

 # It is ignored by the interpreter,

 # but is important help to human readers.

Double-quotes …

… are the same in Python as single-
quotes (not typical of other languages)

Do you see the difference between
variable names and string constants?

This one is cool! Can you guess what will
happen? Note that height is NOT in quotes.

The same thing with height is quotes
yields an error. Do you see why?

Q18

Key ideas from live coding session:
zellegraphics! Constructing and using objects!

 Put the following into your Session1.py file (erasing what was

there). As you type each line, run the file and see what results.

 from zellegraphics import *

 win = GraphWin('Our First Graphics Demo', 700, 500)

 line = Line(Point(20, 30), Point(300, 490))

 line.draw(win)

 thickLine = Line(Point(30, 490), Point(200, 30))

 thickLine.setWidth(5)

 thickLine.setOutline('red')

 thickLine.draw(win)

 circle = Circle(Point(500, 100), 70)

 circle.setFill('blue')

 circle.draw(win)

Constructs a GraphWin and
makes the variable win refer to it

Constructs Point objects, then a Line object from
them

Changes the characteristics of the
Line to which thickLine refers

As you type this, pause after typing the dot
and count to 3. Hints for completion pop up!

Add more stuff to your drawing. Experiment!

Key ideas from live coding session:
Loops! and range!

 Back in the interpreter (at the >>> prompt), try:

 list(range(12))

 list(range(2, 12))

 list(range(2, 12, 3))

 for k in range(6):

 print k, k * k

Note that this yields 0 to 11 (not 12)

Note the colon and
subsequent indentation

Your turn: Write a for
loop that prints:
 0, 8
 1, 7

 2, 6

 3, 5

 4, 4

 5, 3

 6, 2

 7, 1

Key ideas from live coding session:
Loops and zellegraphics => animation!

 Back in your Session1.py file, add:

 for k in range(7):

 circle = Circle(Point(50, 50), k * 8)

 circle.draw(win)

 Then add:

 rectangle = Rectangle(Point(350, 450), Point(400, 500))

 rectangle.setFill('green')

 rectangle.draw(win)

 import time

 for i in range(300):

 rectangle.move(-1, -1)

 time.sleep(0.01)

Again note the colon and subsequent indentation

Cool, yes?!

Better style: put the import time line at the
beginning of your file.
Aside: in fact, you can get away with omitting the
import time in this module, because zellegraphics
imports it and you imported zellegraphics.

Q19-21 You’ll need to figure out how to “un-draw” a graphical object. Remember that typing a dot
after a variable that refers to a graphical object and then pausing (count to 3) gives help!

Pauses the animation for .01 seconds.
Do you see how this loop yields an animation?

Begin the programming problem in

Homework 1, as follows:

 In IDLE, create a new file called homework1.py

 Please name it exactly like that – all lower case, no

spaces, ends in .py

 Your file should implement a Python program that

creates a graphical scene. Your scene must include

some animation, via a loop.

 Be creative and have some fun with this!

 The first lines of the file must be:

 A comment with your name, followed by:

 A comment that is a 1-sentence description of your scene.

 Ask questions as needed!

