
1 
 

CSSE 120 Exam 2 Topics and Sample Problems 

Format:  The exam will have two sections: 

 Part 1:  Paper-and-Pencil.   Closed-everything, except that you may bring a one-page 
(back and front) “cheat sheet” with whatever you want on it.  Approximately 30 points 
of 100. 

 Part 2:  On-the-computer.  Open-everything, except that you may not communicate 
with anyone except your professor on this part.  Resources you may use include your 
textbook, your notes, the Internet, homework problems, and the course web site.  
Approximately 70 points of 100. 

 

Closed book topics:  All of the closed-book portion of the exam will be drawn from the 

following:  For the closed-book portion of Exam 2, students should be able to: 

1. Trace short snippets of code (less than, say, 10 lines or so) and show what gets printed.  
The code might include anything from the first portion of the course (through Exam 1), but 
will emphasize the following topics, mostly from the second portion of the course: 

 While loops 

 Nested loops 

• When the inner loop does not depend on the outer loop variable, and also when it 
does. 

 Boolean operators (and, or, not) 

 Function definitions and calls, also method calls 

• Especially with parameters 

• Recall that when you return from a function, the arguments refer to the same 
object (or number) that they did before the function was called, but the object 
may have mutated (e.g. if it was a list) during the function call. 

 Dictionaries 

• Creating a dictionary, adding key/value pairs to a dictionary, modifying the value 
associated with a key, deleting a key/value pair, determining whether a key is in 
the dictionary.  The two types of uses of dictionaries. 

2. Loop through a list or string, building and returning a new list or string. 

3. Do counting and summing (examples of the accumulation pattern) over a list or other 
collection of values. 

4. Find the max and min over a list or other collection of values. 

5. Explain what a sentinel is and how it is used. 

6. Write simple sentinel loops, e.g. reading numbers until the user enters the null string. 

7. Write short functions with parameters that return values. 



2 
 

8. Distinguish between printing and returning values from a function.  Capture returned 
values from a function in a variable.  Return and capture multiple values from a function. 

9. Apply Boolean operators (and, or, not) and relational operators (<, >, <=, >=, ==, !=) 

10. Explain what top-down design and procedural decomposition are. 

11. Explain what it means to use documented stubs before coding. 

12. Explain any of the main ideas that your team used in your Robotics project. 

13. Explain the difference between the following notations: 

 math.sin(5) 

 circle.draw(window) 

In particular, understand the implicit and explicit parameters in the latter. 

14. Understand the implications of the fact that variables are references to their values. 

15. Know how and why we put: 

 Comments in our programs. 

 Documentation strings in our programs. 

16. Do anything else from the closed-book topics of Exam 1. 

 But the closed book portion will emphasize the preceding topics, not the topics from 
Exam 1 (except those that are duplicated above). 

 

  



3 
 

Open-everything topics, Big Ideas:  These are the most important ideas that we 

have covered since the first exam (some are repeated here from the material of the first exam).  

Much of the open-everything portion of the exam will be drawn from the following. 

1. Apply loop patterns: 

 The for loop pattern 

 The while loop pattern 

• Interactive loop 

• Sentinel loop using impossible values as the sentinel 

• Sentinel loop using no-input as the sentinel 

 The loop-and-a-half pattern 

• Combined with use of no-input as a sentinel  

 The file loop pattern 

• Also, how to split words on a line into a list of words 

• Also, how to convert strings that represent numbers into numbers 

 Nested loops 

• When the interior loop does not depend on the exterior loop variable 

• When the interior loop DOES depend on the exterior loop variable 

 Wait-until-event loop 

 Saving-a-value-for-the-next-iteration pattern:  Inside a loop: 

x = [some expression involving previous_x] 

 … 

previous_x = x  [this normally appears near the end of the loop] 

2. Do top-down design and procedural decomposition 

3. Loop through a list or string, building and returning a new list or string. 

4. Do counting and summing (examples of the accumulation pattern) over a list or other 
collection of values. 

5. Find the max and min over a list or other collection of values. 

6. Use a dictionary in what we called dictionary use #1: the dictionary is associated with a 
single object and stores attributes of the object, all under the single name of the dictionary. 
For example, each dictionary in the exercise we did was a student.  There was a list of such 
dictionaries, one item in the list for each student. 

7. Do zellegraphics, including:  constructing a GraphWin; constructing circles, rectangles, lines, 
points, polygons, ovals and text objects.  Getting the mouse click and using it.  Getting data 
from an Entry box.  Using images. 

  



4 
 

Sample closed-book problems: 

1. What is the output of each of the following code fragments? 

a. 

 

def silly(x): 

    print "start silly" 

    print x 

    funny(2 * x) 

    goofy(x - 1) 

    print "end silly" 

 

def funny(y): 

    print "start funny" 

    print y 

    goofy(y + 1) 

    print "end funny" 

 

def goofy(z): 

    print "start goofy" 

    print z 

    print "end goofy" 

 

silly(5) 

 

 

 

b. 

numRows = 4 

for i in range(numRows): 

 print " " * i, 

 for j in range(numRows - i): 

  print "*", 

 print 

  

Output: 

Output: 

 



5 
 

c.  

   a, b = 10, 64 

   while a < b: 

     print a, b 

      a = a - 1 

      b = b / 2 

 

 

d. 

 

def changeMe(x, y, z): 

    x += z[1] 

    y = [3, 6, 9] 

    z[0], z[1] = z[1], z[0] 

 

a = 10 

b = [10, 20, 30] 

c = [3, 22, 68] 

changeMe(a, b, c) 

print a, b, c 

     

 

 

2. What gets printed by the following code: 

 

circleA = Circle(Point(25, 25), 10) 

circleB = Circle(Point(50, 50), 20) 

circleC = Circle(Point(75, 75), 30) 

circleC = circleB 

circleB = circleA 

circleA.move(100, 0) 

circleB.move(200, 0) 

print circleA.getCenter().getX() 

print circleB.getCenter().getX() 

print circleC.getCenter().getX() 

 

 

Output:    

Output: 

 

Output: 

 



6 
 

3. Write a function that takes a list of numbers and two integers, and returns a list of all 
numbers in the given list that are between the two integers (including the endpoints).  You 
may assume that the first of the two integers is less than or equal to the second of the two 
integers. 

4. If you are using top-down design, you should design the contents of which function first?  

5. Explain what a sentinel value is and give a concrete example of its use. 

6. Write the definition of a Python function called inorder that takes three numeric 
parameters and returns a Boolean value indicating whether the three numbers are in 
increasing order.  For example,  inorder(3, 6, 9) returns True, and 

inorder(4, 2, 8) returns False.  Note that True is NOT the same as ‘True’. 

 

Sample open-book problems: 

1. Threshold.  Define a function threshold(dailyGains, goal) that behaves as 
follows:  

The first parameter is a list of numbers that represent daily gains in a stock's value. The 
second parameter is a single positive number that is a profit goal. The function should 
return the minimum number of days for which the stock must be owned in order to 
achieve a profit at least as large as the stated goal. In the case that the goal is 
unreachable, the function should return 0. 

For example, threshold([5,3,8,2,9,1], 17) should return 4 because the goal 
can be reached after the first 4 days (5+3+8+2). 

Another example:  threshold([5,3,8,-2,9,1], 47) should return 0. 

2. Duplicates.  Write a function that allows a user to enter words (one per line), continuing 
until the user first enters a duplicate, as in: 

Start entering words: 

kiwi 

apple 

plum 

watermelon 

banana 

apple 

You already entered apple.  

You listed 5 distinct words.  

3. Input into a list.  Write a function input_into_list that allows the user to enter numbers.  The 
user can enter as many numbers as she wants on a line.  If she enters nothing on a line, that 
signals end of input.  The function should return a list of all the numbers entered by the 
user, in the order in which they were entered. 

You may assume that the user only enters numbers, except when she enters nothing to 
signal end of input.  That is, you don’t have to deal with malformed inputs. 



7 
 

4. Any of the problems in the dictionariesUse1.py module of the  22-Dictionaries project. 

5. Any of the problems in the 14-NestedLoops project. 

6. Any of the problems in the 13-LoopPatterns project. 


