
1

CSSE 120 Session 1 Transcript
This will be a quick intro. We’ll come back to this stuff again in more detail starting next

time. Instructor: You may want to increase the font size in IDLE at this time (Options

Configure IDLE Size).

Live code the following with students, working line by line.

This is a comment. It is ignored by the Python

interpreter but is important to human readers.

Note that the answer is NOT 14 – multiplication has “precedence”

over addition, in Python as in grade-school arithmetic.

Variable names and everything else are case-sensitive

in Python (and in most programming languages).

Prints a float (not an int). New in Python 3.

Try typing the first few characters and then

hold the alt + / keys down. Completion!

Now we'll define a function: similar to mathematically writing

f(x, y) = x * y

Then we call the function twice.

Note that our previous variables width and triangleArea

are unaffected by the function definition and calls.

2

Continue to live code the following with students, working line by line

3

Open up a new code window at this point. Save the File as <something>.py. (e.g.

Session1.py). Place in the window:

Run it (Run menu or F5). This is what you get back in the Python Shell (nothing shows up).

Continuing in the new code window:

Now the 5 shows up.

Also try both lines in the interactive Python Shell, like this:

Back in the new code window, add a line:

This results in an error message, back in the interactive Python Shell:

4

Erase the code from the new code window (the script file).

Graphics:
Now, do something like the following. After each new line of code (or enough to get new

stuff in the graphics window) run it. But before running the code, make sure the last 2 lines

are entered, else the window may hang.

Note the use of zellegraphics vs. graphics – this is a change from page 82 of the text.

The above causes a new window to put up, with a line on it like this: (Clicking in the window

closes it – students, do you see why?)

5

Continue entering lines in the program window and running them, like this:

6

Continue entering lines in the program window and running them, like this:

7

Loops: Try this in the interactive Python Shell:

8

Then back

in the

program

window

to get a

bunch of

circles.

9

Add the lines:

 from time import sleep

And later in the file:

 sleep(0.5)

The result is the same picture as before, but the circles show up one by one (with half a

second pauses in between each one showing up).

10

Range expressions and loops: Back in the interactive Python Shell, try this, line by line.

(Ask students to come up the second loop, that is, to come up with a loop whose output isL

0 8

1 7

2 6

3 5

4 4

5 3

6 2

7 1

11

Then back in the program window, add the range statement loop shown below:

When it is run, you get this window (note the concentric circles in the upper left):

12

Finally, let’s animate a Rectangle, like this:

That results in this

(but the square moves).

