
WIDGETS

CSSE 120—Rose Hulman Institute of Technology

Viewing Feedback and Tasks

 Turn on Task view in Eclipse

Window Show View Tasks

 Add CONSIDER tag

Window Preferences Pydev Task Tags

 Add CONSIDER: to end of list

 Revealing task tags

 Project clean

Widgets

 "Widget" is a generic name for a component of a

Graphical User interface (such as a button, menu, or

textbox).

 Our simple Python graphics module only provides

one kind of widget.

 We can create our own: a RoseButton.

Q1

Button Widget Class

 Button object:

 Displayed as text inside a rectangle.

What information does a Button object need to know

about itself (instance variables)?

What are its operations (methods)?

 Before answering these questions, let's run a demo.

Q2

Constructor for Button class

class Button:

""" A Button widget similar to the one in Zelle 10.6…"""

FONT_NAME = 'courier'

FONT_SIZE = 20

def __init__(self, win, label, center, height=0, width=0):

"""Initialize a Button with the given..."""

self.center = center

self.label = label

self.__setRectDimensions(height, width)

self.__setRect()

self.__setText()

self.enable()

self.rect.draw(win)

self.text.draw(win)

class variables (used as constants here)

put complex tasks into

separate methods, to

keep constructor simple

methods (like __setRect) whose names begin with two underscores (and do

not also end with two underscores) are intended to be used as "private" helper

methods, only called from other methods from the same class.
Q4-5

Private methods used by __init__()

def __setRect(self):

"""Internal method. Called by the constructor.

Create the rectangular border of the button. """

self.rect = Rectangle(Point(self.minX, self.minY),

Point(self.maxX, self.maxY))

def __setText(self):

"""Internal method. Called by the constructor.

Create the Text object for the button's label"""

self.text = Text(self.center, self.label)

self.text.setFace(Button.FONT_NAME)

self.text.setSize(Button.FONT_SIZE)

Note the use
of the class
variables

self.minX , etc have been computed
in __setRectDimensions() (not
shown) from the center, height, and
width Q6-7

Build a Better Button, a RoseButton?

 The problem

 If width and/or height passed to the constructor are too

small, the button's label may extend outside the

rectangle that is supposed to bound it.

 User has to rely on trial and error to get a reasonable

button width.

 Solution

 A better Button constructor that will create a "barely

large enough" rectangle if the given width and height

are too small.

Constraints and research

 Fixed-width font (Courier). Why?

 Fixed font size (I chose 20 point).

 Experiments indicated that each character is about
16 pixels wide and about 34 pixels tall.

 Thus these class variables:

MIN_HEIGHT = 38 # A button should be at least this tall,

in order to comfortably surround the text.

FONT_NAME = 'courier'

FONT_SIZE = 20

CHAR_WIDTH = 16 # The width of a character (in pixels) of

the chosen font face/size.

EXTRA_HORZ_SPACE = 6 # Put in this much extra horizontal

space so that the label doesn't run

into the end of the rectangle.

Enhance the RoseButton Class

 Checkout the ButtonWidget project.

 In RoseButton.py, add code to guarantee that a

button's rectangle will be large enough to enclose

its text.

 Hints:

 Need to convert label text to a minimum button width

 Use max(i,j) function to get the maximum of two

numbers (to avoid shrinking the big button)

 Look for the TODO tags in the Task view in Eclipse!

If you finish this, go on to the next step (see handout)

Ooh, pretty colors!

 Go to ColorButtons.py.

 Study the code that is

there (especially the

event loop) Add code

to create the buttonList.

 Add the re-enable all

button and make it

work.

 Commit the new

version to your

repository.
Look for the TODO tags in

the Task view in Eclipse!

