STRUCTS, TYPEDEF, #DEFINE,
AND USING C MODULES

Preamble: #define and typedef

C allows us to define our own constants and type
names to help make code more readable

#define
#define
#define
#define

typedef

TERMS 3
FALL O

WINTER 1
SPRING 2

int coinValue;

For more info, see Kochan,
p. 299-303 (#define),
p. 325-327 (typedef)

coinValue quarter = 25, dime = 10;

How could we make our own bool type?

Q1-Q2

Structures

No obijects or dictionaries in C. Structures (structs)
are the closest thing that C has to offer.

Two ways of grouping data in C:
Array: group several data elements of the same type.
Access individual elements by position : student(i]
Structure: group of related data
Data in struct may be of different types
Conceptually like dictionaries, syntax like objects
Access individual elements by name: endPoint.x

Not endPoint[“X"]

Q3-Q5

struct syntax

struct <optional_tag_name> {
<type_1> <fieldname_1>;
<type_2> <fieldname_2>;

<type_n> <fieldname_n>;
};
This says that each variable of this type has
all these fields, with the specified types

But structs are best declared in conjunction with
, ds on on next slide...

Example: Student struct type

Declare the type:
typedef struct {
int year;
double gpa;
} Student;

Make and print a student's info:

Student myStudent;

myStudent.gpa = 3.4;

myStudent.year = 2010;

printf (“Year $d GPA %4.21f]\n"“,s.year,s.gpa);

Q6

Hands on working together

Let’s define a Point struct type together

Make a new C Project called “PointModule”
(Hello World ANSI C Project)

Rename file PointModule.c to main.c
(it will help avoid confusion later)

Within main.c create a typedef for a Point struct
Two fields, named x and y
Make both x and y have type int
See code on next slide

Together let’'s make a Point type

Type this in after the #includes but
before main

typedef struct ({
int x;
int y;

} Point;

Together let’'s make a Point
Type this in within main

int main(void) {
Point myPoint;
myPolnt.x = 3;
myPoint.y = 4;
printf ("myPoint.x = %d myPoint.y = %d\n"
,myPoint.x myPoint.y) ;
return EXIT SUCCESS;

That’s a struct

That’s an easy introduction to using typedef with
struct

Let’s make some fancier ways to initialize a struct

Three ways to initializing a struct

Student juan; Shorter:

juan.year = 2008; Student juan = {2008, 3.2};

juan.gpa = 3.2; (Only allowed when declaring and initializing
variable together in a single statement.)

Student makeStudent(int year, double gpa) {
Student stu;

stu.year = year; typedef struct {

stu.gpa = gpa; int year;

return stu:; double gpa;
} } Student;

Student juan = makeStudent(2008,3.2) ;

makePoint

Write code for makePoint:

Point makePoint (int xx, int yy)
It receives two int parameters and returns a Point

From within the main function:
Declare a Point called myPoint2
Call makePoint

Store the result into myPoint2
print the values of x and y

Solution (try it on your own first)
—

typedef struct {
int x;
int y;

} Point;

Point makePoint(int xx, int yy) {
Point result;
result.x = xx;
result.y = yy;
return result;

}

int main(void) {
Point myPoint2 = makePoint (3,5);
printf ("myPoint2.x = $d myPoint2.y = %d\n",myPoint2.x,myPoint2.y) ;
return EXIT SUCCESS;

}

C Modules

Grouping code into separate files for the purposes of
organization, reusability, and extensibility

Header files
.h file extension
Other .c files will #include your header file

For publicly available functions, types, #defines, etc.

Source files
.c file extension
The actually C code implementations of functions, etc.

Needs to #Hinclude .h files to use functions that are not
written in this file

Making Modules

The .c and .h file with the same name are called
collectively a
Our example:

PointOperations.c

PointOperations.h

Let’s create this module together in Eclipse

Right-click src folder > New > Header File
Call the file PointOperations.h

Right-click src folder 2 New = Source file
Call the file PointOperations.c

Move your code

Next we need to move our code
Publicly available content goes into .h files

Private content and code implementations go into .c
files

Move into PointOperations.h
The typedef struct code

Move into PointOperations.c

The makePoint function

Q7

Adding the wiring

main.c and PointOperations.c need to know about
PointOperations.h

Add #includes into both files, like this:

#include “PointOperations.h”

Function prototypes in the .h

Additionally main.c needs to know about the
makePoint function (currently only in private .c file)
Add this function prototype to PointOperations.h

Point makePoint(int xx, int yy);

The compiler automatically knows that the
implementation of the function is within the .c file of
this module

Any .c file that #includes “PointOperations.h” can
now call that function (it’s publicly available)

PointOperations.h

#ifndef POINTOPERATIONS H
#define POINTOPERATIONS H

typedef struct ({
int x;
int y;

} Polnt;

Point makePoint (int xx, int yy):;

#endif /* POINTOPERATIONS H */

PointOperations.c
#include "PointOperations.h"

Point makePoint(int xx, int yy)
{

Poilnt result;

result.x = xX;

result.y = vy;

return result;

main.cC

#include <stdio.h>
#include <stdlib.h>

#include "PointOperations.h"

int main(void) {
Point myPoint = makePoint (3,5);

printf ("myPoint.x = $d myPoint.y =
$d\n" ,myPoint.x,myPoint.y) ;

return EXIT_SUCCESS;

Try it out

Save all 3 files, build and run
Ctrl Shift S, Ctrl B, Ctrl F11

Works exactly like it did before but using modules!
Refactoring code always feels a little odd
So much effort for no visible difference

A modular approach is much more extensible

In software engineering, extensibility is a system design
principle where the implementation takes into consideration
future growth.

Extended in class example

Next we're going to do an extented example using
structs, typedef, and modules

If you get stuck during any part, RAISE YOUR HAND
and get a TA to help you stay caught up

There will be a bunch of parts, so getting behind
early works out BADLY

Make sure each works before moving on

Raise your hand if you have trouble with weird
build errors (it happens!)

Geometry Operations

To make sure everyone is together checkout the
project

Look at the code and try running the program

Good trick, if you get a ‘Binaries not found’ error
Make a small change to main.c (like adding a space)
Save main.c (Ctrl S) to mark it as needing to be rebuilt
Build (Ctrl B) to build program

Run (Ctrl F11) to run code
Sometimes | need to do that cycle TWICE

Seems to make things happy assuming | have no code errors

The Goal

Sit back and we'll talk about what this code WILL
do

Look in the Tasks window for TODO instructions
Close other projects so that their TODOs don’t show up

For example, close the That’s Perfect project

Files

Testing your modules code
main.c

Point Operations module
PointOperations.h
PointOperations.c

Line Segment Operations module

LineSegmentOperations.h

LineSegmentOperations.c

Main

Used to test your modules

Things it already does
Creates a point
Gets a point from the console
Prints the points
Call a distance function
Prints the distance

Things you'll add

Test code for Line Segment Operations (after you write
those functions)

PointOperations Module
-

1 Functions in this module:

makePoint(int xx, int yy);
void printPoint(Point currentPoint);

double calculateDistance(Point pt1, Point pt2);

LineSegmentOperations Module
=

1 Functions in this module:

LineSegment makelineSegment(ptl, pt2);
void printLineSegment(LineSegment currentline);

double calculatelLength(LineSegment currentline);

Calculate distance function

TODOs #1 & #2

Notice that calculateDistance always returns 0.0
d=" (xo-x7)2 + (yo-Y1)?

Remember math.h?

For practice try to use pow (even though less efficient)

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html

Continued expansion

Implementing the LineSegmentOperations module
LineSegmentOperations.h

LineSegmentOperations.c

TODO #3

For a line segment, what should the fields be?
Do the quiz question.

Then create a new LineSegment variable type

Q8-9

Add more struct types

TODOs #4 thru #7

Add a makelineSegment function

Receives two Points returns the LineSegment

From main call this function to make a LineSegment
Add a printLineSegment function
Code provided but uses MY field names

From main call printlineSegment to print your line

Calculate the line segment length

]
1 TODOs #8 thru #10

1 Write a calculateLength function for a line segment.

71 Hint: Can you call the distance function we already wrote to
avoid copy & paste?

Get started

The rest of the time is your time to finish the 10

TODO’s
Ask questions as you need help

If you finish early, checkout and start reading
HW 23 RectangleStructs

Go ahead!

A C Program in Multiple Files

Check out Session23RectangleStructs from SVN.

A large program can be organized by separating it
info multiple files.

Notice the three source files:
rectangle.h contains the struct definitions and function
signatures used by the other files.
rectangle.c contains the definitions of the functions that
comprise operations on point and Rectangle objects.
Session23RectangleStructs.c contains a main function
to test the various functions of the rectangle module.

Both of the .c files must include the .h file.

