
CSSE 120—Rose Hulman Institute of Technology

STRUCTS, TYPEDEF, #DEFINE,

AND USING C MODULES

Preamble: #define and typedef

 C allows us to define our own constants and type
names to help make code more readable

#define TERMS 3
#define FALL 0
#define WINTER 1
#define SPRING 2

typedef int coinValue;
coinValue quarter = 25, dime = 10;

How could we make our own bool type?

Q1-Q2

For more info, see Kochan,

p. 299-303 (#define),

p. 325-327 (typedef)

Structures

 No objects or dictionaries in C. Structures (structs)
are the closest thing that C has to offer.

 Two ways of grouping data in C:

Array: group several data elements of the same type.

 Access individual elements by position : student[i]

 Structure: group of related data

 Data in struct may be of different types

 Conceptually like dictionaries, syntax like objects

 Access individual elements by name: endPoint.x

 Not endPoint[“X”]

Q3-Q5

struct syntax

 struct <optional_tag_name> {

<type_1> <fieldname_1> ;

<type_2> <fieldname_2> ;

. . .

<type_n> <fieldname_n> ;

};

 This says that each variable of this struct type has

all these fields, with the specified types

 But structs are best declared in conjunction with

typedef, as on on next slide…

 Declare the type:
typedef struct {

int year;

double gpa;

} Student;

 Make and print a student's info:

Student myStudent;

myStudent.gpa = 3.4;

myStudent.year = 2010;

printf(“Year %d GPA %4.2lf]\n“,s.year,s.gpa);

Example: Student struct type

Q6

Hands on working together

 Let‟s define a Point struct type together

 Make a new C Project called “PointModule”
 (Hello World ANSI C Project)

 Rename file PointModule.c to main.c

 (it will help avoid confusion later)

Within main.c create a typedef for a Point struct

 Two fields, named x and y

 Make both x and y have type int

 See code on next slide

Together let‟s make a Point type

Type this in after the #includes but

before main

typedef struct {

int x;

int y;

} Point;

Together let‟s make a Point

Type this in within main

int main(void) {

Point myPoint;

myPoint.x = 3;

myPoint.y = 4;

printf("myPoint.x = %d myPoint.y = %d\n“

,myPoint.x,myPoint.y);

return EXIT_SUCCESS;

}

That‟s a struct

 That‟s an easy introduction to using typedef with

struct

 Let‟s make some fancier ways to initialize a struct

Three ways to initializing a struct

Student juan;

juan.year = 2008;

juan.gpa = 3.2;

Student makeStudent(int year, double gpa) {

Student stu;

stu.year = year;

stu.gpa = gpa;

return stu;

}

Student juan = makeStudent(2008,3.2);

Shorter:

Student juan = {2008, 3.2};

(Only allowed when declaring and initializing

variable together in a single statement.)

typedef struct {

int year;

double gpa;

} Student;

makePoint

Write code for makePoint:

 Point makePoint(int xx, int yy)

 It receives two int parameters and returns a Point

 From within the main function:

 Declare a Point called myPoint2

 Call makePoint

 Store the result into myPoint2

 print the values of x and y

Solution (try it on your own first)

typedef struct {

int x;

int y;

} Point;

Point makePoint(int xx, int yy) {

Point result;

result.x = xx;

result.y = yy;

return result;

}

int main(void) {

Point myPoint2 = makePoint(3,5);

printf("myPoint2.x = %d myPoint2.y = %d\n",myPoint2.x,myPoint2.y);

return EXIT_SUCCESS;

}

C Modules

 Grouping code into separate files for the purposes of

organization, reusability, and extensibility

 Header files

 .h file extension

 Other .c files will #include your header file

 For publicly available functions, types, #defines, etc.

 Source files

 .c file extension

 The actually C code implementations of functions, etc.

 Needs to #include .h files to use functions that are not

written in this file

Making Modules

 The .c and .h file with the same name are called

collectively a module

 Our example:

 PointOperations.c

 PointOperations.h

 Let‟s create this module together in Eclipse

 Right-click src folder New Header File

 Call the file PointOperations.h

 Right-click src folder New Source file

 Call the file PointOperations.c

Move your code

 Next we need to move our code

 Publicly available content goes into .h files

 Private content and code implementations go into .c

files

 Move into PointOperations.h

 The typedef struct code

 Move into PointOperations.c

 The makePoint function

Q7

Adding the wiring

 main.c and PointOperations.c need to know about

PointOperations.h

 Add #includes into both files, like this:

 #include “PointOperations.h”

Function prototypes in the .h

 Additionally main.c needs to know about the

makePoint function (currently only in private .c file)

 Add this function prototype to PointOperations.h

 Point makePoint(int xx, int yy);

 The compiler automatically knows that the

implementation of the function is within the .c file of

this module

 Any .c file that #includes “PointOperations.h” can

now call that function (it‟s publicly available)

PointOperations.h

#ifndef POINTOPERATIONS_H_

#define POINTOPERATIONS_H_

typedef struct {

int x;

int y;

} Point;

Point makePoint(int xx, int yy);

#endif /* POINTOPERATIONS_H_ */

PointOperations.c

#include "PointOperations.h"

Point makePoint(int xx, int yy)

{

Point result;

result.x = xx;

result.y = yy;

return result;

}

main.c

#include <stdio.h>

#include <stdlib.h>

#include "PointOperations.h"

int main(void) {

Point myPoint = makePoint(3,5);

printf("myPoint.x = %d myPoint.y =

%d\n",myPoint.x,myPoint.y);

return EXIT_SUCCESS;

}

Try it out

 Save all 3 files, build and run

 Ctrl Shift S, Ctrl B, Ctrl F11

 Works exactly like it did before but using modules!

 Refactoring code always feels a little odd

 So much effort for no visible difference

 A modular approach is much more extensible

 In software engineering, extensibility is a system design

principle where the implementation takes into consideration

future growth.

Extended in class example

 Next we‟re going to do an extented example using

structs, typedef, and modules

 If you get stuck during any part, RAISE YOUR HAND

and get a TA to help you stay caught up

 There will be a bunch of parts, so getting behind

early works out BADLY

 Make sure each works before moving on

 Raise your hand if you have trouble with weird

build errors (it happens!)

Geometry Operations

 To make sure everyone is together checkout the

project Session23GeometryOperations

 Look at the code and try running the program

 Good trick, if you get a „Binaries not found‟ error

Make a small change to main.c (like adding a space)

 Save main.c (Ctrl S) to mark it as needing to be rebuilt

 Build (Ctrl B) to build program

 Run (Ctrl F11) to run code

 Sometimes I need to do that cycle TWICE

 Seems to make things happy assuming I have no code errors

The Goal

 Sit back and we‟ll talk about what this code WILL

do

 Look in the Tasks window for TODO instructions

 Close other projects so that their TODOs don‟t show up

 For example, close the That‟s Perfect project

Files

 Testing your modules code

 main.c

 Point Operations module

 PointOperations.h

 PointOperations.c

 Line Segment Operations module

 LineSegmentOperations.h

 LineSegmentOperations.c

Main

 Used to test your modules

 Things it already does

 Creates a point

Gets a point from the console

 Prints the points

 Call a distance function

 Prints the distance

 Things you‟ll add

 Test code for Line Segment Operations (after you write

those functions)

PointOperations Module

 Functions in this module:

Point makePoint(int xx, int yy);

void printPoint(Point currentPoint);

double calculateDistance(Point pt1, Point pt2);

LineSegmentOperations Module

 Functions in this module:

LineSegment makeLineSegment(Point pt1, Point pt2);

void printLineSegment(LineSegment currentLine);

double calculateLength(LineSegment currentLine);

Calculate distance function

 TODOs #1 & #2

 Notice that calculateDistance always returns 0.0

 d = √ (x2-x1)
2 + (y2-y1)

2

 Remember math.h?

 For practice try to use pow (even though less efficient)
 http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html

Continued expansion

 Implementing the LineSegmentOperations module

 LineSegmentOperations.h

 LineSegmentOperations.c

 TODO #3

 For a line segment, what should the fields be?

 Do the quiz question.

 Then create a new LineSegment variable type

Q8-9

Add more struct types

 TODOs #4 thru #7

 Add a makeLineSegment function

 Receives two Points returns the LineSegment

 From main call this function to make a LineSegment

 Add a printLineSegment function

Code provided but uses MY field names

 From main call printLineSegment to print your line

Calculate the line segment length

 TODOs #8 thru #10

 Write a calculateLength function for a line segment.

 Hint: Can you call the distance function we already wrote to

avoid copy & paste?

Get started

 The rest of the time is your time to finish the 10

TODO‟s

 Ask questions as you need help

 If you finish early, checkout and start reading

HW23 RectangleStructs

 Go ahead!

A C Program in Multiple Files

 Check out Session23RectangleStructs from SVN.

 A large program can be organized by separating it

into multiple files.

 Notice the three source files:
 rectangle.h contains the struct definitions and function

signatures used by the other files.

 rectangle.c contains the definitions of the functions that

comprise operations on point and Rectangle objects.

 Session23RectangleStructs.c contains a main function

to test the various functions of the rectangle module.

 Both of the .c files must include the .h file.

