
OBJECT-ORIENTED CONCEPTS, 

PROJECT WORK  

CSSE 120—Rose Hulman Institute of Technology



Exam 2 Facts

 Date: Tuesday, October 16, 2007

 Time:  7:00 to 9:00 PM

 Venue: Section 1 (Delvin) O257

Section 3 (Curt)   O267

Section 2 (Claude) A-G O257, H-Z O267

 Chapters:  Zelle chapters 1 to 12 with greater 

emphasis on chapters 6 to 12

 Organization: A paper part and a computer part, 

just as on the first exam.  Same resources allowed.



 topics for exam 1

 defining functions

 using functions

 decision structures

 exception handling

 loops

 indefinite(while)

 interactive

 sentinel

 file 

 nested

 computing with Booleans

 random numbers

 top-down design

 bottom-up implementation

 objects

 defining & using new 

classes

 data processing with Class

 encapsulation

 widgets

 lists (with objects, classes)

 process of OOD

 OO concepts

Possible topics for exam 2



Object-Oriented Programming

 Technique becoming standard practice in software 

development

 Facilitates production of complex software

More reliable

 Cost-effective

Models real world



Object-Oriented Concepts

 Features that make development truly object-

oriented

 Encapsulation:  Separating implementation details of an 

object from how the object is used

 Inheritance: Defining new classes to borrow behavior 

from 1 or more other classes

 Polymorphism: What an object does in response to a 

method call depends on the type or class of the object



Encapsulation

 Separates object use (how it is used) from

object implementation (what it does)

 Implementation is independent of how it is used

Makes it easier to think about the code

 Client code sees a "black box" with a known 

interface

 Implementation can change without changing client



Encapsulation Example

g = Fraction(12,6)

h = Fraction(6,11)

print g, h

print g.add(h)

Client code
class Fraction:

def __init__(self, 

numerator=0, 

denominator=1):

…

def __str__(self):

…

def add(self, other):

…

Fraction Class



Thinking Inside the Box g = Fraction(12,6)

h = Fraction(6,11)

print g, h

print g.add(h)

Client code

class Fraction:

"""Without normalization."""

def __init__(self, numerator=0, denominator=1):

self.num = numerator

self.den = denominator

def __str__(self):

if self.den == 0:

return 'undefined fraction'

fact = gcd(abs(self.num), abs(self.den))

if self.den < 0:

fact = -fact

return str(self.num // fact) + '/' + \

str(self.den // fact)

def add(self, other):

return Fraction(self.num*other.den + \

self.den*other.num, self.den*other.den)



Thinking Inside the Box g = Fraction(12,6)

h = Fraction(6,11)

print g, h

print g.add(h)

Client code

class Fraction:

"""With normalization."""

def __init__(self, numerator=0, denominator=1):

if denominator==0:

self.den = 0

self.num = 0

else:

fact = gcd(abs(numerator), abs(denominator))

if denominator < 0:

factor = -factor

self.num = numerator // fact

self.den = denominator // fact

def __str__(self):

if self.den == 0:

return 'undefined fraction'

return str(self.num) + '/' + str(self.den)

def add(self, other): (unchanged)



Function vs. object encapsulation

Functions Objects

Black box exposes: Function signature 

(name, formal 

parms, return value)

Constructor and 

method signatures

Encapsulated inside 

the box (i.e., what 

we can change 

without changing 

client)

Operation 

implementation

Data storage and 

operation 

implementation



Inheritance

 Superclass

 Base class that new class borrows from

 Instance variables and methods

Models a more general concept

 Subclass

 New class that borrows behavior from the superclass

Models a special case of the more general concept

More specialized class that inherits from the superclass

 Enhances the superclass

 Is a derived class



Relationship between classes  

GridSquare

getTemp()

…

temp

…

Tree

fuel

calcNextTemp()

Rock

calcNextTemp()

Both Tree and 

Rock inherit temp 

and getTemp() 

from GridSquare

Superclass

Subclass SubclassTree adds 

the fuel 

instance 

variable

Tree and Rock both 

define their own 

calcNextTemp methods



Subclass definition

class GridSquare:

def __init__(self, row, col):

self.row = row

self.col = col

class Tree(GridSquare):

def __init__(self, row, col, fuel):

GridSquare.__init__(self, row, col)

self.fuel = fuel



Inheritance example

 Using Eclipse, checkout project OOConcepts from 

the svn repository

 Execute the bankAccount program 

 Study the code and answer quiz questions 

5, 6, and 7



Polymorphism

 Behavior can vary depending on the actual type of 

an object

 Consider the calcNextTemp() method

 Both Trees and Rocks can calcNextTemp, but they do so 

differently

 Consider the ‘+’ operator

 5 + 6, 4.3 + 7.0, [1, 2, 3] + [4.3, 7.8]

 Consider Zelle graphics library

 circle.draw(window)

 rectangle.draw(window)



A polymorphism example

def main():    

animals = [Animal("Garth")]

animals.append(Cat("Mittens"))

animals.append(Dog("Blacky"))

for animal in animals:     

print "\n", str(animal) + " and I " \

+ animal.sound()

Look at animalSounds.py in the OOConcepts project



In-class exercise 

 Add a CheckingAccount class as a subclass of 

BankAccount

 Add a transactionCount instance variable to the 

CheckingAccount class

 Without affecting the superclass BankAccount, 

enhance the methods deposit() and withdraw() to 

update transactionCount 

 Add method getTransactionCount() to 

CheckingAccount that returns the transaction count

 Test and commit your work to your SVN repository



Project Milestones

 Session 20 — Program Shows Game State:

 printBoard() and createBoard(listOfRows)

 Note that you have to design and implement some data 

structure to track the board state

 Session 21 — Program Allows Player to Make Any 

Single Move: 

makeMove(chooseRow, chooseColumn, placeRow, 

placeColumn)

 Session 22 — Game Finished

 DATE TBD — Final Presentation



Project Work


