
DYNAMIC MEMORY
ALLOCATION IN C

CSSE 120—Rose Hulman Institute of Technology

Final Exam Facts

Date: Thursday, February 25, 2010
Time: 8:00 AM to 12:00 noon
Venue: O259 – O257 – O267 (see schedule page)

Chapters: Zelle chapters 1 12.1
Assigned C readings from Kochan plus Web resources
linked from ANGEL Resources page
On-computer part: will be only in C
You may bring two double-sided sheets of paper this
time.

Q1-2

Final Exam Facts

Organization: A paper part and a computer part,
similar to the first 2 exams.
The paper part will emphasize both C and Python.
There will be a portion in which we will ask you to
compare and contrast C and Python language features
and properties.
The computer part will be in C.
The computer part will be worth approximately 50%
of the total.

Memory Requirements

Any variable requires a certain amount of memory.
Primitives, such an int, double, and char,
typically may require between 1 and 8 bytes,
depending on the desired precision, architecture,
and Operating System’s support.
Complex variables such as structs, arrays, and strings
typically require as many bytes as their
components.

How large is this?

sizeof operator gives the number bytes needed
to store a value
sizeof(char)
sizeof(int)
sizeof(double)
sizeof(char *)
sizeof(student)
sizeof(jose)
printf("size of char is %d bytes.\n", sizeof(char));

char *firstName;
int terms;
double scores;
student jose;

typedef struct {
char *name;
int year;
double gpa;

} student;

Q3

How large is this?

Q3

32 bits = 4 bytes

int : 4 bytes

double : 8 bytes

char : 1 byte

pointer : 4 bytes

Memory Allocation

In many programming languages, memory gets
dynamically allocated as the need arises.
Example: Lists in Python grow and shrink as we add
or remove items from them.
In Python, memory gets allocated as the need
arises.
Memory gets freed up when it is no longer needed.

Static Memory Allocation

In C, we have the ability to manually allocate
memory.
We typically do this when we know ahead of time
the storage needs of a complex data-structure.
We have seen this last time, when we did this:

char string[10];

We allocated ten bytes to store a string.
In some of the examples, we used all of the
allocated bytes, in some, we did not.

Dynamic Memory allocation in C

We use the malloc command to dynamically
allocate memory on the heap.
The syntax is:

malloc(<size>);

The command returns a pointer to a memory
location.
We typically want to store that pointer.

Example: Dynamic Memory
allocation in C

Suppose we want to reserve space for 10 doubles.
We would do:
double *samples;
samples = (double *) malloc(count *sizeof(double));

The memory returned to you can store objects of any
type (void pointer).
We give it the desired type by typecasting.

Deallocation of Dynamic Memory

When we allocate memory, we also need to free it
up when we are done with it.
This is only necessary when we dynamically allocate
memory (using constructs like malloc()).
Otherwise, we may well run out of the memory
space allocated to us.

Memory Deallocation in C

In order to deallocate memory, we use the free
command
The syntax is:

free(<pointer>);

To continue our example, we would do:

free(result);

Sample Project for Today

Check out MallocSample from your SVN Repository
Verify that it runs, get help if it doesn't

Returning Arrays from Functions

In maf-main.c, remove the exit() call near the
beginning.
Run the program:

What happens?
Why?

Original version of getSamples() just creates local
storage that is recycled when function is done!
If we want samples to persist beyond the function’s
lifetime, we need to allocate memory using "malloc".

Also need to #include <stdlib.h>
Q4

double *getSamples(int count) {
double *samples;
samples = (double *)malloc(count * sizeof(double));
if (samples == NULL) {

exit(EXIT_FAILURE);
}
int i;

for (i=0; i<count; i++) {
samples [i] = gaussian(82.5, 7.1);

}
return samples;

}

Dynamically allocating an array

Typecast to desired pointer type

returns a void pointer (void *) to
memory of specified size or NULL if
request fails. Memory is uninitialized

Exit program if out of memory or
cannot allocate for another reason

Q5, 6

Using Dynamically Allocated Array

double *sampleA;
double *sampleB;
int sampleCount = 5;

sampleA = getSamples(sampleCount);
sampleB = getSamples(sampleCount);

for (i=0; i<sampleCount; i++) {
printf%0.1lf\n", sampleA[i] + sampleB[i]);

}

free(sampleA);
free(sampleB); Don't forget to free the memory

that was previously "malloc-ed".
Q7

Recap: sizeof, malloc and free

sizeof operator: gives the number of bytes needed
to store a value
*malloc(<amount>): returns a pointer to space for
an object of size amount, or NULL if the request
cannot be satisfied. The space is uninitialized.
void free(void *p): deallocates the space pointed to
by p; does nothing if p is NULL. p must point to
memory that was previously dynamically allocated.

Descriptions from K&R, p. 252

Dynamically Allocating Structs

Can use malloc to dynamically allocate structs
We'll use this to create an Array data type soon
that's "smarter" than the basic C version
Will need to use pointers to structs

student *zeb;

Accessing elements of structs is different with
pointers…

Pointers to Structs

Direct reference
student debby = {"Deb", 2011, 2.9};

debby.gpa = 3.2;

printf("%s, Class of %d\n",
debby.name, debby.year);

Use dot when you have
the struct directly

Pointer reference
student *aaron;

aaron = (student *)
malloc(sizeof(student));

aaron->name = "Aaron";

aaron->year = 2009;

aaron->gpa = 3.1;

printf("%s, Class of %d\n",
aaron->name,aaron->year);

Use "arrow" when you
have a pointer to it

aaron->gpa is shorthand for (*aaron).gpa

Q8

Overcoming some array limitations

malloc reserves space for variables or arrays in a
separate location in memory called the heap

It allows the return type of a function to be an array
It allows arrays to be resized

Keywords:
ptr = malloc(number_of_bytes_needed)
sizeof()
free(ptr)
ptr = realloc(ptr, number_of_bytes_needed)

What does realloc do()

Q9, 10

Your C Capstone Project

A mini-project to be done individually
Due Friday at 5:00 PM
Demo
10 min to read the spec
Questions and Answers
Turn in your in-class quiz
Work on the project

	DYNAMIC MEMORY �ALLOCATION IN C
	Final Exam Facts
	Final Exam Facts
	Memory Requirements
	How large is this?
	How large is this?
	Memory Allocation
	Static Memory Allocation
	Dynamic Memory allocation in C
	Example: Dynamic Memory allocation in C
	Deallocation of Dynamic Memory
	Memory Deallocation in C
	Sample Project for Today
	Returning Arrays from Functions
	Dynamically allocating an array
	Using Dynamically Allocated Array
	Recap: sizeof, malloc and free
	Dynamically Allocating Structs
	Pointers to Structs
	Overcoming some array limitations
	Your C Capstone Project

