
Dictionaries
CSSE 120—Rose Hulman Institute of Technology

Data Collections

Frequently several individual pieces of data are
related
We can collect them together in one object
Examples:

A list or tuple contains an ordered sequence of items
A string contains an ordered sequence of characters
A custom object. Example from zellegraphics: A Line
object contains two endpoints, a color, and the window
in which it is drawn
A dictionary (defined soon) contains key-value pairs

List - review

an ordered collection of items
Usually homogeneous (all items of the same type),
but Python does not require this
Access is by position (index) in the list

>>> animals = ['dog', 'cat', 'cow']
>>> animals[1]
'cat'
>>> animals[1:3]
['cat', 'cow']
>>> animals[1] = ['pig']
>>> animals
['dog', 'pig', 'cow']

More list mutations

Items can be added, removed, or replaced
>>> animals = ['dog', 'cat', 'cow']
>>> animals.append('pig')
>>> animals
['dog', 'cat', 'cow', 'pig']
>>> animals[1:3] = ['cow', 'cat', 'goat']
>>> animals
['dog', 'cow', 'cat', 'goat', 'pig']
>>> animals[1:2] = []
>>> animals
['dog', 'cat', 'goat', 'pig']

Q1

Dictionary

A collections object in which each item is a key-
value pair
No two items may have the same key

So a dictionary is a function (in the mathematical sense)
Items are not stored in any particular order
Typically all keys are same type (not required)
Keys must be immutable (i.e., number, string, tuple)
Access to items is by key

key's purpose is similar to list's index
syntax also similar

Your turn

Open IDLE and make a quick dict
Try the following:
>>> myDict = {'name':'Dave', 'gpa':3.5}
>>> print myDict
>>> myDict['name']
>>> myDict['gpa']
>>>dir(dict)

Dictionary methods

Assume that there is a dictionary named dict1

dict1.get(k [,d]) if k is a key in the dictionary return
the value for that key, else return d. d is an optional
parameter
dict1.has_key(k) True if dict1 has a key k, else False
dict1.items() list of dict1's (key, value) pairs, as tuples
dict1.keys() list of dict1 's keys
dict1.pop(k [,d]) remove key and return value
dict1.values() list of dict1 's values
Open dictionaryMethods.py

Another dictionary example

gradeLowestScore = { } # empty dictionary
gradeLowestScore['A'] = 89.5
gradeLowestScore['B+'] = 84.5
gradeLowestScore['B'] = 79.5
gradeLowestScore['C+'] = 74.5
gradeLowestScore['C'] = 69.5
gradeLowestScore['D+'] = 64.5
gradeLowestScore['D'] = 59.5
gradeLowestScore['F'] = 0.0

difference = gradeLowestScore['B']-
gradeLowestScore['C']

Q2

dict initialization & operations

>>> gradeLowestScore = {'A':89.5, 'B+':84.5, 'B':79.5,
'C+':74.5, 'C':69.5, 'D+':64.5, 'D': 59.5, 'F': 0.0}

>>> gradeLowestScore['C']
69.5
>>> gradeLowestScore['C'] = 68.0 # new value for key 'C'
>>> gradeLowestScore.keys()
['A', 'C+', 'C', 'B', 'D+', 'F', 'D', 'B+']
>>> gradeLowestScore.values()
[89.5, 74.5, 68.0, 79.5, 64.5, 0.0, 59.5, 84.5]
>>> gradeLowestScore.items()
[('A', 89.5), ('C+', 74.5), ('C', 68.0), ('B', 79.5), ('D+',
64.5), ('F', 0.0), ('D', 59.5), ('B+', 84.5)]
>>> gradeLowestScore.pop('C') # remove 'C' item
68.0
>>> 'C' in gradeLowestScore
False
>>> 'D' in gradeLowestScore
True

Q3-4

dict's get method

What if we try to find the lowest score for an "E"
grade?
>>> gradeLowestScore['E']
Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>
gradeLowestScore['E']

KeyError: 'E'

The get method has a similar purpose, but lets us
provide a value to return if the key we search for is
not in the dictionary:
>>> gradeLowestScore.get('E', 'No such key')

‘No such key'

Two main dictionary uses

A collection of similar objects
Designed for fast lookup by key

Storing different properties of a single object

Use 1: Collection of similar objects

Examples:
A movie database in which we use the title as the key
and look up the director.
A phone database in which we use the person’s name
as the key and look up the phone number

In-class exercise
Create a concordance for a text file.
This is just a list of words in the file and the line numbers
on which each word occurs

Q5-6

Use 2: Properties of a single object

Represent a card (blackjack) as a dictionary
properties: 'cardName', ' suit', ' value'

A card is represented by a dictionary with keys
cardName, suit, and value

def makeCard (cardName, suit):
card = {}
card['suit'] = suit
card['cardName'] = cardName
card['value'] = cardValue(cardName)
return card

	Dictionaries
	Data Collections
	List - review
	More list mutations
	Dictionary
	Your turn
	Dictionary methods
	Another dictionary example
	dict initialization & operations
	dict's get method
	Two main dictionary uses
	Use 1: Collection of similar objects
	Use 2: Properties of a single object

