ASSIGNMENT AND LOOPS

CSSE 120 - Rose-Hulman Institute of Technology

Outline (some of Chapters 2 and 3)

\square Variables and assignments
\square Definite loops
\square Basic types: numbers (int and float)
\square Math library
\square Accumulator problem

Some Numeric Operations

Operator	Operation
+	Addition
-	Subtraction
*	Multiplication
/	Division
**	Exponentiation
\%	Remainder
//	Integer division (even on floats)
Function	Operation
abs(x)	Absolute value of x
round (x, y)	Round x to y decimal places
$\operatorname{int}(x)$	Convert x to the int data type
float(x)	Convert x to the float data type

Variables and Assignments

\square Variable
\square Identifier that stores a value
\square A value must be assigned to the variable when it is created
\square <variable> $=$ <expr> (assignment syntax)
\square Assignment
\square Process of giving a value to a variable
\square Python uses $=$ (equals sign) for assignment
$\square x=0.25$
$\square x=3.9 * x *(1-x)$

Variables as sticky notes

$$
\begin{aligned}
& x=10 \\
& x=x+1
\end{aligned}
$$

Assignment Statements

1. Simple assignments

- <variable> = <expr>

2. Input assignments

- <variable> = input(<prompt>)
- temp = input("Enter high temperature for today")

3. Compound assignments

- <var>op=<expr> means <var> = <var> op <expr> where op is + , - , $*$, or \%
- Example: total += 5 is the same as total = total + 5

4. Simultaneous (multiple) assignments
\square <var>, <var>, ..., <var> = <expr>, <expr>, ..., <expr>

- sum, diff $=x+y, x-y$

Q1-2

Compound Assignment: += and related operators (-=, *=, ...)

$\square \mathrm{a}+=\mathrm{b}$ is equivalent to $\mathrm{a}=\mathrm{a}+\mathrm{b}$

IDLE 1.2.1
>>> $x=5$
>>> x += 6; print x
11
>>> x *= 2; print x
22
>>> x -= 3; print x
19
>>> x \%= 7; print x
5
>>> s = "abc"
>>> s += "d"; print s abcd
>>> nums $=[1,2,3]$
>>> nums += $[4,5]$
>>> print nums
$[1,2,3,4,5]$

Sequence

\square A list of things
\square For example:
ㅁ $[2,3,5,7]$

- ["My", "dog", "has", "fleas"]
\square Every for loop uses a list.

Definite loops

\square Definition

- Loop: a controll structure for executing a portion of a program multiple times
- Definite: Python knows how many times to iterate the body of the loop
\square Syntax:
for <var> in <sequence> :
<body>
Executes <body> once for every element of
<sequence>, with <var> set to that element.

Examples using loops

Loop body
>>> for b in ["John", "Paul", "George", "Ringo"]: print b, " was a Beatle"

Flowchart for a for loop

Trace this by hand:

$a=0$

no for iin $[1,2,3,4]$: $\mathbf{a}=\mathbf{a}+1$ print a

An accumulator

 combines parts of a list using looping.We'll use this idea often this term!

The range function

\square A way to create a list that is an arithmetic sequence
\square Useful to generate a list used by a for loop
\square General formats for range function:
\square range(<expr>)
\square range(<expr>, <expr>)
\square range(<expr>, <expr>, <expr>)
\square What do the following range calls do?
\square print range(8) print range $(3,18,2)$ print range(1,7) print range(17, -5, -3)

Use range to make the list for a loop

for in range(7): print i, i*i
\square for in range(15, 2, -1): print i,
print

Another loop with an accumulator

\square Find the sum of the odd numbers that are ≤ 13
\square Do it together as a class, in IDLE

More math library components

Pyihon	Mathematics	English
pi	π	Approximation of $p i$
e	e	Approximation of e
$\sin (\mathrm{x})$	$\sin \mathrm{x}$	The sine of x
$\cos (\mathrm{x})$	$\cos \mathrm{x}$	The cosine of x
$\tan (\mathrm{x})$	$\tan \mathrm{x}$	The tangent of x
$\operatorname{atan} 2(\mathrm{y}$,	$\tan ^{-1} \mathrm{y} / \mathrm{x}$	Arc tangent (inverse tangent) of angle of line from $(0,0)$ to (x, y)
x$)$		The natural (base e$) \log$ of x

Math library functions

Quadratic formula to find real roots for quadratic equations of the form $a x^{2}+b x+c=0$

- Solution:

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

\square Write out the Python expression for the first formula.
\square If you have time, test it in IDLE

EXPLORING WITH PYTHON

Pair Programming

\square Working in pairs on a single computer
\square One person, the driver, uses the keyboard
\square The other person, the navigator, watches, thinks, and takes notes
\square For hard (or new) problems, this technique
\square Reduces number of errors
\square Saves time in the long run
\square Works best when partners have similar skill level
\square If not, then student with most experience should navigate, while the other student drives.

Food tasting

\square Suppose you are at food tasting show and are tasting 5 different dishes
\square Sampling the dishes in different orders may affect how good they taste
\square If you want to try out every possible ordering, how many different orders would there be?
\square That number is the factorial of 5
$\square \mathrm{n}!=n(\mathrm{n}-1)(\mathrm{n}-2) \ldots$ (1)
\square What type of problem is this?

Accumulating results: factorial

\square Work in groups of two
\square Pick a driver and navigator
\square Write a Python program that
\square Prompts the user for an integer
\square Calculates the factorial of the integer
$\square n!=n(n-1)(n-2) \ldots(1)$
\square Outputs the result to the screen
\square Driver: email the code to your partner (so each has the program for the open-computer parts of exams)
\square Submit one copy of program with both student's names in a program comment.
\square Submit it in ANGEL to the Lessons > Homework > Homework 3 > Factorial Drop Box

Graphics Exercise with loops

\square Trade roles with partner-new driver, new navigator
\square Write a program that draws a figure like this where the lengths of the lines increase by a constant amount
\square Use your previous graphics program as a model of how to import graphics functions, create a
76 Graphics Window - $\square \mathbf{\square}$ window, etc.
\square You may want to use variables to hold current x-coordinate and current line length, and change the values of those variables each time through the loop
\square Homework $3>$ Bar Chart Drop Box

If you don't finish Factorial or Bar Chart program

\square Meet before next class to finish them
\square Reminders:

- Driver: email the code to your partner (so each has the program for the open-computer parts of exams)
\square Submit one copy of program with both student's names in a program comment.
\square Log into Angel and go to the class's webpage
\square Click on the Lessons tab then go to Homework > Homework 3
\square Submit the factorial program in the Factorial Drop Box
\square Submit the line drawing program in the Bar Chart Drop Box

