ASSIGNMENT AND LOOPS

CSSE 120 — Rose-Hulman Institute of Technology

Outline (some of Chapters 2 and 3)

- Variables and assignments
- Definite loops
- Basic types: numbers (int and float)
- Math library
- Accumulator problem

Some Numeric Operations

Operator	Operation
+	Addition
-	Subtraction
*	Multiplication
/	Division
**	Exponentiation
%	Remainder
//	Integer division (even on floats)
Function	Operation
abs(x)	Absolute value of x
round(x, y)	Round x to y decimal places
int(x)	Convert x to the int data type
float(x)	Convert x to the float data type

Variables and Assignments

- Variable
 - Identifier that stores a value
 - A value must be assigned to the variable when it is created
 - extstyle ext
- Assignment
 - Process of giving a value to a variable
 - Python uses = (equals sign) for assignment
 - x = 0.25
 - = x = 3.9 * x * (1 x)

Variables as sticky notes

$$x = 10$$

$$x = x + 1$$

Assignment Statements

- 1. Simple assignments
 - <variable> = <expr>
- 2. Input assignments
 - \square <variable> = input(<prompt>)
 - temp = input("Enter high temperature for today")
- 3. Compound assignments
 - - Example: total += 5 is the same as total = total + 5
- 4. Simultaneous (multiple) assignments
 - \Box <var>, <var>, <var> = <expr>, <expr>, ..., <expr>
 - \blacksquare sum, diff = x + y, x y

Compound Assignment: += and related operators (-=, *=, ...)

 \Box a += b is equivalent to a = a + b

```
TDLE 1.2.1
                             >>> nums = [1,2,3]
>>> x = 5
>>> x += 6; print x
                             >>> nums += [4,5]
11
                             >>> print nums
>>> x *= 2; print x
                             [1,2,3,4,5]
2.2
>>> x -= 3; print x
19
>>> x %= 7; print x
5
>>> s = "abc"
>>> s += "d"; print s
abcd
```

Sequence

- A list of things
- □ For example:
 - **[2, 3, 5, 7]**
 - ["My", "dog", "has", "fleas"]
- □ Every **for** loop uses a list.

Definite loops

- Definition
 - Loop: a control structure for executing a portion of a program multiple times
 - Definite: Python knows how many times to iterate the body of the loop
- □ Syntax:

```
for <var> in <sequence> :
     <body>
```

Executes <body> once for every element of
<sequence>, with <var> set to that element.

Examples using loops

```
Loop index
                                Loop sequence
>>> for i in [0, 1, 2, 3, 4, 5]:
         print 2**i
                            Loop body
>>> for b in ["John", "Paul",
               "George", "Ringo"]:
         print b, " was a Beatle"
```

Flowchart for a for loop

Trace this by hand:

An *accumulator* combines parts of a list using looping.

We'll use this idea often this term!

The range function

- A way to create a list that is an arithmetic sequenceUseful to generate a list used by a for loop
 - General formats for range function:
 - range(<expr>)
 - range(<expr>, <expr>)
 - range(<expr>, <expr>, <expr>)
- What do the following range calls do?
- print range(8) print range(1, 7) print range(3, 18, 2) print range(4, 10, -1) print range(17, -5, -3)

Use range to make the list for a loop

```
for i in range(7):
    print i, i*i
for i in range(15, 2, -1):
    print i,
print
```

Another loop with an accumulator

- \square Find the sum of the odd numbers that are ≤ 13
- □ Do it together as a class, in IDLE

More math library components

Python	Mathematics	English
pi	π	Approximation of pi
е	е	Approximation of e
sin(x)	sin x	The sine of x
cos(x)	cos x	The cosine of x
tan(x)	tan x	The tangent of x
atan2(y, x)	tan ⁻¹ y/x	Arc tangent (inverse tangent) of angle of line from $(0,0)$ to (x, y)
log(x)	ln x	The natural (base e) log of x
log10(x)	log ₁₀ x	The base 10 log of x
exp(x)	e ^x	The exponential of x

Math library functions

Quadratic formula to find real roots for quadratic equations of the form $ax^2 + bx + c = 0$

Solution:

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

- Write out the Python expression for the first formula.
- □ If you have time, test it in IDLE

EXPLORING WITH PYTHON

Pair Programming

- Working in pairs on a single computer
 - One person, the driver, uses the keyboard
 - The other person, the navigator, watches, thinks, and takes notes
- For hard (or new) problems, this technique
 - Reduces number of errors
 - Saves time in the long run
- Works best when partners have similar skill level
- If not, then student with most experience should navigate, while the other student drives.

Food tasting

- Suppose you are at food tasting show and are tasting 5 different dishes
- Sampling the dishes in different orders may affect how good they taste
- If you want to try out every possible ordering, how many different orders would there be?
 - That number is the factorial of 5
 - $n! = n (n 1) (n 2) \dots (1)$
- What type of problem is this?

Accumulating results: factorial

- Work in groups of two
 - Pick a driver and navigator
- Write a Python program that
 - Prompts the user for an integer
 - Calculates the factorial of the integer
 - = n! = n (n-1) (n-2) ... (1)
 - Outputs the result to the screen
- Driver: email the code to your partner (so each has the program for the open-computer parts of exams)
- Submit one copy of program with both student's names in a program comment.
- Submit it in ANGEL to the Lessons > Homework > Homework 3
 Factorial Drop Box

Graphics Exercise with loops

- □ Trade roles with partner—new driver, new navigator
- Write a program that draws a figure like this where the lengths of the lines increase by a constant amount
- Use your previous graphics program as a model of how to
 - import graphics functions, create a window, etc.
- You may want to use
 variables to hold current
 x-coordinate and current line length,
 and change the values of those
 variables each time through the loop
- □ Homework 3 > Bar Chart Drop Box

If you don't finish Factorial or Bar Chart program

- Meet before next class to finish them
- □ Reminders:
 - Driver: email the code to your partner (so each has the program for the open-computer parts of exams)
 - Submit one copy of program with both student's names in a program comment.
 - Log into Angel and go to the class's webpage
 - Click on the Lessons tab then go to Homework > Homework 3
 - Submit the factorial program in the Factorial Drop Box
 - Submit the line drawing program in the Bar Chart Drop

Box