
CSSE 120 – Introduction to Software Development

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s first project: Session29_MallocSample

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Dynamic Memory Allocation

• What it is

• How Python does it: garbage collection

• How C does it: malloc, free

Time to work on your project

Session 29

Final Exam Facts

 Date: Thursday, November 18, 2010

 Time: 8 a.m. to noon

 Venue: O167, O169, O157, O159 (sections 1 to 4, respectively)

 Organization: A paper part and a computer part, similar to the

first 2 exams.

 The paper part will emphasize both C and Python.
 You may bring two double-sided sheets of paper this time.

 There will be a portion in which we will ask you to compare and

contrast C and Python language features and properties.

 The computer part will be in C.
 The computer part will be worth approximately 50% of the total.

Q1-2

Memory Requirements

 Any variable requires a certain amount of memory.

 Primitives, such an int, double, and char,

typically may require between 1 and 8 bytes,

depending on the desired precision, architecture,

and Operating System’s support.

 Complex variables such as structs, arrays, and strings

typically require as many bytes as their

components.

How large is this?

 sizeof operator gives the number bytes needed to store a

value

 sizeof(char)

 sizeof(char*)

 sizeof(int)

 sizeof(float)

 sizeof(double)

 sizeof(student)

 sizeof(jose)

 printf("size of char is %d bytes.\n", sizeof(char));

char *firstName;

int terms;

double scores;

student jose;

typedef struct {

 char *name;

 int year;

 double gpa;

} student;

Examine the beginning of main_MallocSample of Session29_MallocSample.
Run it and use the results to answer Q3-5 of your quiz.
Ask about the questions that you are not sure of. Q3-5

1 byte = 8 bits

On our system:
char: 1 byte
int: 4 bytes
float: 4 bytes
double: 8 bytes
pointer: 4 bytes
student: 16 bytes

Memory Allocation

 In many programming languages, memory gets

dynamically allocated as the need arises.

 Example: In Python:

 Lists grow and shrink as we add to or remove items from

them.

 Space for objects is allocated when the object is constructed

 In such languages, memory gets freed up when it is no

longer needed.

 By the “garbage collector”

 When is memory no longer needed? Answer: When nothing

refers to it (also see next slide)

Static

Memory Allocation

 In C, we have the ability

to manually allocate memory.

 We typically do this when we know ahead of time the storage needs of

a complex data-structure.

 We have seen this previously, when we did this:

 char string[10];

 We allocated ten bytes to store a string.

 In some of the examples, we used all of the allocated bytes,

in some, we did not.

 What memory is allocated

by the example to the right? When?

When is it returned to the system?

 This is called static allocation. The memory is allocated from the stack.

void foo(int x, char *p) {

 double y;

 char string[10];

 ...

}

Dynamic Memory allocation in C

 We use the malloc command to dynamically

allocate memory on the heap.

 The syntax is:

 malloc(<size>);

 That is, malloc takes an integer that specifies

the size in bytes to be allocated

 malloc returns a pointer to a memory location.

 We typically want to store that pointer.

Example: Dynamic Memory

allocation in C

 Suppose we want to reserve space for 10 doubles.

We would do:

 double *samples;

 samples = (double *) malloc(count * sizeof(double));

 The memory returned can store objects of any type (void pointer).

 We give it the desired type by typecasting.

 That’s the (double *)

 Notation for typecasting: put the type to which to cast

in parentheses. The next expression is “converted” to that type.

 int x = 8;

int y = 3;

double z;

z = x / y;

int x = 8;

int y = 3;

double z;

z = ((double) x) / y;

WRONG!
z becomes 2,
since C does
integer division
on integers

RIGHT! Must cast the integers.
Necessary in AroundTheWorld!

Deallocation of Dynamic Memory

 When we allocate memory, we also need to free it

up when we are done with it.

 This is only necessary when we dynamically allocate

memory (using constructs like malloc()).

 Remember, static allocation allocates memory when the

function is entered and deallocates memory when the

function exits.

 Otherwise, we may well run out of the memory

space allocated to us.

Memory Deallocation in C

 In order to deallocate memory, we use the free command

 The syntax is:

 free(<pointer>);

 To continue our example, we would do:

double *samples;

samples = (double *) malloc(count * sizeof(double));

 // You can use samples here just like an array, e.g.

for (k = 0; k < count; ++k) {

 ... samples[k] ...

}

free(samples);

When you are done with this storage (array), free up
its space. Otherwise, you have a memory leak.

Allocate the space.

Use the space.

Returning Arrays from Functions

 In main_MallocSample.c, remove the exit() call

near the beginning.

 Run the program:

 What happens?

 Why?

 Original version of getSamples() just creates local

storage that is recycled when function is done!

 If we want samples to persist beyond the function’s

lifetime, we need to allocate memory using malloc.

 Also need to #include <stdlib.h>
Q6-7

double *getSamples(int count) {

 double *samples;

 samples = (double *) malloc(count * sizeof(double));

 if (samples == NULL) {

 exit(EXIT_FAILURE);

 }

 int i;

 for (i = 0; i < count; i++) {

 samples[i] = gaussian(82.5, 7.1);

 }

 return samples;

}

Dynamically allocating an array

Typecast to desired pointer type

returns a void pointer (void *) to
memory of specified size or NULL if
request fails. Memory is uninitialized

Exit program if out of
memory or cannot
allocate for another
reason

Q8-9

OK to use array notation
even though declared
as a pointer

Using Dynamically Allocated Array

double *sampleA;

double *sampleB;

int sampleCount = 5;

sampleA = getSamples(sampleCount);

sampleB = getSamples(sampleCount);

for (i = 0; i < sampleCount; i++) {

 printf(%0.1lf\n", sampleA[i] + sampleB[i]);

}

free(sampleA);

free(sampleB);

Don't forget to free the memory

that was previously "malloc-ed".
Q10

Recap: sizeof, malloc and free

 sizeof operator: gives the number of bytes needed

to store a value

 malloc(<amount>): returns a pointer to space for an

object of size amount, or NULL if the request cannot

be satisfied. The space is uninitialized.

 void free(void *p): deallocates the space pointed to

by p; does nothing if p is NULL. p must point to

memory that was previously dynamically allocated.

Descriptions from K&R, p. 252

Summary: Overcoming some array

limitations with dynamic memory allocation

 malloc reserves space for variables or arrays in a

separate location in memory called the heap

 It allows the return type of a function to be an array

 It allows arrays to be resized

 Keywords:
 float *ptr;

ptr = (float *) malloc(number_of_bytes_needed)

 sizeof()

 ptr = (float *) realloc(ptr, number_of_bytes_needed)

 free(ptr)

With a similar typecast for
pointers to other types.

Q11-12

Your C Capstone Project

 Work on it the rest of today.

 Individual or with a partner.

 Due Saturday at 11:59 p.m.

 Strive to maintain at least this schedule:

 In class Monday: ask your instructor to demo the project and explain it.

 Monday night: read the project instructions and bring questions to class Tuesday.

 Monday night: Sketch the organization of your project -- what functions will you need to

write? What structures? Consider drawing a structure diagram.

 Tuesday: Examine the TestScores project that we gave you.

 You don't need to understand all of it at this point, but you DO need to know WHAT IT

COULD HELP YOU WITH.

 Refer to the TestScores project as needed for details on how to do some of the steps.

 Tuesday and Wednesday: Begin implementing.

 Thursday: Bring your questions to class.

 Thursday through Saturday: Finish implementing.

