
CSSE 120 – Introduction to Software Development

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s first project: Session29_MallocSample

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Dynamic Memory Allocation

• What it is

• How Python does it: garbage collection

• How C does it: malloc, free

Time to work on your project

Session 29

Final Exam Facts

 Date: Thursday, November 18, 2010

 Time: 8 a.m. to noon

 Venue: O167, O169, O157, O159 (sections 1 to 4, respectively)

 Organization: A paper part and a computer part, similar to the

first 2 exams.

 The paper part will emphasize both C and Python.
 You may bring two double-sided sheets of paper this time.

 There will be a portion in which we will ask you to compare and

contrast C and Python language features and properties.

 The computer part will be in C.
 The computer part will be worth approximately 50% of the total.

Q1-2

Memory Requirements

 Any variable requires a certain amount of memory.

 Primitives, such an int, double, and char,

typically may require between 1 and 8 bytes,

depending on the desired precision, architecture,

and Operating System’s support.

 Complex variables such as structs, arrays, and strings

typically require as many bytes as their

components.

How large is this?

 sizeof operator gives the number bytes needed to store a

value

 sizeof(char)

 sizeof(char*)

 sizeof(int)

 sizeof(float)

 sizeof(double)

 sizeof(student)

 sizeof(jose)

 printf("size of char is %d bytes.\n", sizeof(char));

char *firstName;

int terms;

double scores;

student jose;

typedef struct {

 char *name;

 int year;

 double gpa;

} student;

Examine the beginning of main_MallocSample of Session29_MallocSample.
Run it and use the results to answer Q3-5 of your quiz.
Ask about the questions that you are not sure of. Q3-5

1 byte = 8 bits

On our system:
char: 1 byte
int: 4 bytes
float: 4 bytes
double: 8 bytes
pointer: 4 bytes
student: 16 bytes

Memory Allocation

 In many programming languages, memory gets

dynamically allocated as the need arises.

 Example: In Python:

 Lists grow and shrink as we add to or remove items from

them.

 Space for objects is allocated when the object is constructed

 In such languages, memory gets freed up when it is no

longer needed.

 By the “garbage collector”

 When is memory no longer needed? Answer: When nothing

refers to it (also see next slide)

Static

Memory Allocation

 In C, we have the ability

to manually allocate memory.

 We typically do this when we know ahead of time the storage needs of

a complex data-structure.

 We have seen this previously, when we did this:

 char string[10];

 We allocated ten bytes to store a string.

 In some of the examples, we used all of the allocated bytes,

in some, we did not.

 What memory is allocated

by the example to the right? When?

When is it returned to the system?

 This is called static allocation. The memory is allocated from the stack.

void foo(int x, char *p) {

 double y;

 char string[10];

 ...

}

Dynamic Memory allocation in C

 We use the malloc command to dynamically

allocate memory on the heap.

 The syntax is:

 malloc(<size>);

 That is, malloc takes an integer that specifies

the size in bytes to be allocated

 malloc returns a pointer to a memory location.

 We typically want to store that pointer.

Example: Dynamic Memory

allocation in C

 Suppose we want to reserve space for 10 doubles.

We would do:

 double *samples;

 samples = (double *) malloc(count * sizeof(double));

 The memory returned can store objects of any type (void pointer).

 We give it the desired type by typecasting.

 That’s the (double *)

 Notation for typecasting: put the type to which to cast

in parentheses. The next expression is “converted” to that type.

 int x = 8;

int y = 3;

double z;

z = x / y;

int x = 8;

int y = 3;

double z;

z = ((double) x) / y;

WRONG!
z becomes 2,
since C does
integer division
on integers

RIGHT! Must cast the integers.
Necessary in AroundTheWorld!

Deallocation of Dynamic Memory

 When we allocate memory, we also need to free it

up when we are done with it.

 This is only necessary when we dynamically allocate

memory (using constructs like malloc()).

 Remember, static allocation allocates memory when the

function is entered and deallocates memory when the

function exits.

 Otherwise, we may well run out of the memory

space allocated to us.

Memory Deallocation in C

 In order to deallocate memory, we use the free command

 The syntax is:

 free(<pointer>);

 To continue our example, we would do:

double *samples;

samples = (double *) malloc(count * sizeof(double));

 // You can use samples here just like an array, e.g.

for (k = 0; k < count; ++k) {

 ... samples[k] ...

}

free(samples);

When you are done with this storage (array), free up
its space. Otherwise, you have a memory leak.

Allocate the space.

Use the space.

Returning Arrays from Functions

 In main_MallocSample.c, remove the exit() call

near the beginning.

 Run the program:

 What happens?

 Why?

 Original version of getSamples() just creates local

storage that is recycled when function is done!

 If we want samples to persist beyond the function’s

lifetime, we need to allocate memory using malloc.

 Also need to #include <stdlib.h>
Q6-7

double *getSamples(int count) {

 double *samples;

 samples = (double *) malloc(count * sizeof(double));

 if (samples == NULL) {

 exit(EXIT_FAILURE);

 }

 int i;

 for (i = 0; i < count; i++) {

 samples[i] = gaussian(82.5, 7.1);

 }

 return samples;

}

Dynamically allocating an array

Typecast to desired pointer type

returns a void pointer (void *) to
memory of specified size or NULL if
request fails. Memory is uninitialized

Exit program if out of
memory or cannot
allocate for another
reason

Q8-9

OK to use array notation
even though declared
as a pointer

Using Dynamically Allocated Array

double *sampleA;

double *sampleB;

int sampleCount = 5;

sampleA = getSamples(sampleCount);

sampleB = getSamples(sampleCount);

for (i = 0; i < sampleCount; i++) {

 printf(%0.1lf\n", sampleA[i] + sampleB[i]);

}

free(sampleA);

free(sampleB);

Don't forget to free the memory

that was previously "malloc-ed".
Q10

Recap: sizeof, malloc and free

 sizeof operator: gives the number of bytes needed

to store a value

 malloc(<amount>): returns a pointer to space for an

object of size amount, or NULL if the request cannot

be satisfied. The space is uninitialized.

 void free(void *p): deallocates the space pointed to

by p; does nothing if p is NULL. p must point to

memory that was previously dynamically allocated.

Descriptions from K&R, p. 252

Summary: Overcoming some array

limitations with dynamic memory allocation

 malloc reserves space for variables or arrays in a

separate location in memory called the heap

 It allows the return type of a function to be an array

 It allows arrays to be resized

 Keywords:
 float *ptr;

ptr = (float *) malloc(number_of_bytes_needed)

 sizeof()

 ptr = (float *) realloc(ptr, number_of_bytes_needed)

 free(ptr)

With a similar typecast for
pointers to other types.

Q11-12

Your C Capstone Project

 Work on it the rest of today.

 Individual or with a partner.

 Due Saturday at 11:59 p.m.

 Strive to maintain at least this schedule:

 In class Monday: ask your instructor to demo the project and explain it.

 Monday night: read the project instructions and bring questions to class Tuesday.

 Monday night: Sketch the organization of your project -- what functions will you need to

write? What structures? Consider drawing a structure diagram.

 Tuesday: Examine the TestScores project that we gave you.

 You don't need to understand all of it at this point, but you DO need to know WHAT IT

COULD HELP YOU WITH.

 Refer to the TestScores project as needed for details on how to do some of the steps.

 Tuesday and Wednesday: Begin implementing.

 Thursday: Bring your questions to class.

 Thursday through Saturday: Finish implementing.

