As you arrive:

Start up your computer and plug it in

Log into Angel and go to CSSE 120

Do the Attendance Widget — the PIN is on the board
Go to the course Schedule Page

Open the Slides for today if you wish

Check out today'’s first project:

Plus in-class time
working on these
concepts AND

practicing previous
concepts, continued
as homework.

Dynamic Memory Allocation
* What it is
* How Python does it: garbage collection

* How C does it: malloc, free

Time to work on your project

Final Exam Facts

: Thursday, November 18, 2010
: 8 a.m. to noon
: 0167, 0169, O157, O159 (sections 1 to 4, respectively)

: A paper part and a computer part, similar to the
first 2 exams.
The paper part will emphasize both C and Python.
You may bring two double-sided sheets of paper this time.

There will be a portion in which we will ask you to compare and
contrast C and Python language features and properties.

The computer part will be in C.
The computer part will be worth approximately 50% of the total.

Q1-2

Memory Requirements

Any variable requires a certain amount of memory.

Primitives, such an , , and ,

typically may require between 1 and 8 bytes,
depending on the desired precision, architecture,
and Operating System’s support.

Complex variables such as , , and
typically require as many bytes as their
components.

How large is this?

operator gives the number bytes needed to store a

value :

1 byte = 8 bits typedef struct {
sizeof (char) char *name;
-] t ;
sizeof (char*) On our system: Clizub{:a;pa;

sizeof (int) char: 1byte } student;

_ £ (float) int: 4 bytes
sizeo oa

float: 4 bytes char *firstName;

sizeof (double) double: 8 bytes int terms;
sizeof (student) |pointer: 4 bytes :Zsz(l;ts;z:sf

: : student: 16 bytes '
sizeof (jose)

printf ("size of char is %d bytes.\n", sizeof(char));

Examine the beginning of main_MallocSample of Session29_MallocSample.
Run it and use the results to answer Q3-5 of your quiz.
Ask about the questions that you are not sure of. Q3-5

Memory Allocation

In many programming languages, memory gets
dynamically allocated as the need arises.

Example: In Python:

Lists grow and shrink as we add to or remove items from
them.

Space for objects is allocated when the object is constructed

In such languages, memory gets freed up when it is no
longer needed.
By the “garbage collector”

When is memory no longer needed? Answer: When nothing
refers to it (also see next slide)

Static
Memory Allocation

Top

In C, we have the ability
to manually allocate memory.

()

funcl()

parameters

main()

(b)

Top

We typically do this when we know ahead of time the storage needs of

a complex data-structure.

We have seen this previously, when we did this:

We allocated ten bytes to store a string.

In some of the examples, we used all of the allocated bytes,

in some, we did not.

What memory is allocated
by the example to the right¢ When?
When is it returned to the system?

This is called static allocation. The memory is allocated from the stack.

void foo(int x, char *p) ({

}

double y;
char string[10];

Dynamic Memory allocation in C

We use the malloc command to dynamically
allocate memory on the heap.

The syntax is:

malloc (<size>) ;

Thatis, malloc takes an integer that specifies
the size in bytes to be allocated

malloc returns a pointer to a memory location.

We typically want to store that pointer.

Example: Dynamic Memory
allocation in C

0 Suppose we want to reserve space for 10 doubles.
We would do:

double *samples;
samples = (double *) malloc(count * sizeof (double)) ;

=1 The memory returned can store objects of any type (void pointer).

1 We give it the desired type by typecasting.
That's the (double *)

m Notation for typecasting: put the type to which to cast
in parentheses. The next expression is “converted” to that type.

int x = 8;

] RIGHT! Must cast the integers.
int y = 3;

Necessary in AroundTheWorld!

WRONG!
z becomes 2, \

since C does

double z;
z = ((double) x) / y;

integer division
on integers

Deallocation of Dynamic Memory
=

7 When we allocate memory, we also need to free it
up when we are done with it.

1 This is only necessary when we dynamically allocate
memory (using constructs like malloc()).
Remember, static allocation allocates memory when the

function is entered and deallocates memory when the
function exits.

1 Otherwise, we may well run out of the memory
space allocated to us.

Memory Deallocation in C

In order to deallocate memory, we use the £free command
The syntax is:
free (K<pointer>) ;

To continue our example, we would do:

double *samples; Allocate the space.
samples = (double *) malloc(count * sizeof (double))

// You can use samples here just like an array, e.q.
for (k = 0; k < count; ++k) {
samples [k]

Use the space.

}

When you are done with this storage (array), free up

free (samples) ; € ts space. Otherwise, you have a memory leak.
|

Returning Arrays from Functions

In main MallocSample.c, remove the exit() call
near the beginning.

Run the program:

What happens?

Why?
Original version of getSamples() just creates local
storage that is recycled when function is donel!

If we want samples to persist beyond the function’s
lifetime, we need to allocate memory using malloc.

Also need to #include <stdlib.h>
Q6-7

Dynamically allocating an array

| Typecast to desired pointer type

double *getSamples (int comnnt) {
double *samples;

samples = (double *) malloc(count * sizeof (double)) ;
if (samples == NULL) {

ex1t (EXIT FAILURE) ;
J returns a void pointer (void *) to

memory of specified size or NULL if
int i; request Tails. Memory is uninitialized

for (1 = 0; 1 < count; i++) {

samples[1] = gaussian(82.5, 7.1); Exit program if out of

memory or cannot
allocate for another

}

return samples; OK to use array notation
} even though declared

as a pointer reason | @8-9 |
1

Using Dynamically Allocated Array

double *sampleA;
double *sampleB;
int sampleCount = 5;

sampleA = getSamples (sampleCount) ;
sampleB = getSamples (sampleCount) ;

for (1 = 0; 1 < sampleCount; i++) {

printf (%0.11£f\n", sampleA[i] + sampleB[i]);

}

free (sampled) ;

free (sampleB) ; Don't forget to free the memory

that was previously "malloc-ed".

Recap: sizeof, malloc and free

operator: gives the number of bytes needed
to store a value

malloc(<amount>): returns a pointer to space for an
object of size amount, or NULL if the request cannot
be satisfied. The space is uninitialized.

void free(void *p): deallocates the space pointed to
by p; does nothing if p is NULL. p must point to
memory that was previously dynamically allocated.

Descriptions from K&R, p. 252

Summary: Overcoming some array
limitations with dynamic memory allocation

malloc reserves space for variables or arrays in a
separate location in memory called the heap

It allows the return type of a function to be an array

It allows arrays to be resized

I<eYWO I‘dS: With a similar typecast for
float *ptr; pointers to other types.

ptr = (float *) malloc (number of bytes needed)

sizeof ()
ptr = (float *) realloc(ptr, number of bytes needed)
free (ptr)

Q11-12

Your C Capstone Project

Work on it the rest of today.
Individual or with a partner.
Due Saturday at 11:59 p.m.

Strive to maintain at least this schedule:

In class Monday: ask your instructor to demo the project and explain it.
Monday night: read the project instructions and bring questions to class Tuesday.

Monday night: Sketch the organization of your project -- what functions will you need to
write? What structures? Consider drawing a structure diagram.

Tuesday: Examine the TestScores project that we gave you.

You don't need to understand all of it at this point, but you DO need to know WHAT IT
COULD HELP YOU WITH.

Refer to the TestScores project as needed for details on how to do some of the steps.
Tuesday and Wednesday: Begin implementing.
Thursday: Bring your questions to class.

Thursday through Saturday: Finish implementing.

