
CSSE 120 – Introduction to Software DevelopmentSession 25

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: Session25_Pointers

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Pointers

• What they are. Why they are useful.

• Their notation in C: & * *

• Using pointers to get data back from a function. scanf as example.

• Next time: Using pointers to send a reference to lots of data to a
function

Outline

 Pointers

 What they are.

Why they are useful.

 Their notation in C

* & *

 Pointers vs Pointee’s – deferencing

 Using pointers to get data back from a function

 scanf as an example

 Next time: Using pointers to send a reference to lots of

data to a function

Parameter Passing in Python

 In Python, parameters are passed two ways:

 For numbers, a copy of the number is passed to the function

 For mutable objects (like lists), a reference to the object is

passed to the function

def swapInts(x, y):

x,y = y,x

x,y = 2, 5

swapInts (x, y)

def swapListElements(alist, i, j):

alist[i], alist[j] = alist[j], alist[i]

alist = [3, 4, 5, 6]

swapListElements(alist, 1, 3)

x

2

y

5

2 5

aList

3 4 5 6

Variables in C

 Variables are stored in memory

 We call the place in memory

the variable’s address

int num;

num = 10;

 C has several types of variables:

 Integers – their bits are interpreted as a whole number

 Doubles – their bits are interpreted as a floating point number

 …

 Pointers – their bits are interpreted as an address in memory

 As such, they are references to other data

10

num:

memory:

???

num:

memory:

Q1

4

num:

memory:

4

num:pNum:

memory: ???

4

num:pNum:

memory: …

99

num:pNum:

memory: …

int num;

num = 4;

int *pNum;

pNum = #

*pNum = 99;

pNum is a
pointer
to an int

pNum is set to
the address of
num

The thing
pNum points
toi s set to 99

???

num:

memory:

pNum is the pointer and num is the pointee.
*pNum deferences the pointer, which means that it obtains the pointee.

Visualizing pointers

Q2-5

Here’s Binky!

 Ignore malloc in the video for now

 Vocabulary

 Pointee: the thing referenced by a pointer

 Dereference: obtain the pointee

 See http://cslibrary.stanford.edu/104/

 What name did we give pointer “sharing” in

Python?

 Answer: aliasing

http://cslibrary.stanford.edu/104/

Proof that pointers store addresses

 Checkout today’s exercise:

Session25_Pointers

 Run it in the debugger

 The console is a separate window

 It automatically inserts a breakpoint at the start of

main()

 Let’s start quiz questions 6-8 together

Q6-8

Box-and-pointer diagrams

 Together, let’s draw Box-and-Pointer Diagrams for

the variables in simplePointers().

 Such diagrams help you understand pointers and are

critical for tracing-pointers-by-hand problems.

 Let us follow change and pChange through the

execution of the function.

0.45

change:

memory:

0.45

change:pChange:

memory: ???

0.45

change:pChange:

memory: …

0.62

change:pChange:

memory: …

double change;

change = 0.45;

double

*pchange;

pChange =

&change;

*pChange =

0.62;

pChange is a
pointer
to a double

pChange is set
to the address
of change

The thing
pChange
points to is set
to 0.62

???

change:

memory:

pChange is the pointer and change is the pointee.
*pChange deferences the pointer, which means that it obtains the pointee.

Box and Pointer diagrams

Using pointers with functions

 We claimed earlier that if we passed a variable’s

reference as a parameter to a function, the function

could change that variable.

 Reminder:

 To get an address, use &

 To get a variable referenced by a pointer, use *

 To declare a pointer variable, use *

upAndDown, wrong version

 Do box-and-pointer diagrams to illustrates why this

does NOT change the arguments.

//This function attempts to modify its parameters

void upAndDown(int takeMeHigher,

int putMeDown) {

takeMeHigher = takeMeHigher + 1;

putMeDown = putMeDown - 1;

}

int b;

foo(&b);

void foo(int *a) {

...

*a = 7;

}

Using pointers as parameters

Box and Pointer Diagrams

Send the address of b

Receive an address

Modify value at address

Now b has the value 7 that was established in foo!

This is useful for:

• sending data back from a function via the parameters, and for

• passing large amounts of data to a function.

Thus pointers in C give us the same advantages as references-to-objects in Python.

???

a b

 7

upAndDown, A version that works

 Change the function and how it’s called so that it

works!

 When you are done, please answer the quiz

question.

 Modifying the previous box-and-pointer diagrams

to show what is happening.

Q9

Practice with Pointers

1. int x = 3, y = 5;

2. int *px = &x;

3. int *py = &y;

4. printf("%d %d\n", x, y);

5. *px = 10;

6. printf("%d %d\n", x, y); /* x is changed */

7. px = py;

8. printf("%d %d\n", x, y); /* x not changed */

9. *px = 12;

10. printf("%d %d\n", x, y); /* y is changed */

Pointer Pitfalls

 Don't try to dereference an unassigned pointer:
 int *p;

*p = 5;

 /* immediate crash! */

 Pointer variables must be assigned address values.
 int x = 3;

int *p;

p = x;

 /* eventual crash */

 Be careful how you increment
 *p += 1; /* is not the same as … */

 *p++;

In-class exercise on pointer pitfalls

 Turn in part 1 of the quiz.

 The rest of today’s quiz lets you see some pointer
pitfalls in action. These make great exam questions!

 Do it now

 When you are done, start the homework:

 A written portion (box and pointer diagrams)

More pointer output

Writing functions to change variables

 doubleMe

 Swap

 minAndMax

 scanf revisited Part 2 Q1-4

Rest of today

 Work through the TODO’s, as numbered.

We’ll do the first few together

 Ask questions as needed!

 Don’t merely make the code “work”. Make sure you

understand the C notation and how to use it.

 If you:

 don’t finish in class, then finish the exercises for homework

 Get help from the assistants in F-217 in the evenings as needed!

