
CSSE 120 – Introduction to Software DevelopmentSession 24

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today‟s project: Session24_Geometry

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Structures, Preamble

• Declaring structure types

• Using structure types

• Using typedef, #Define

C Modules

• Defining and using header

files

• Function prototypes/signatures

• Multiple .c files

Preamble: #define and typedef

 C allows us to define our own constants and type
names to help make code more readable

 How could we make our own Boolean type? Answer:
typedef int boolean

#define TRUE 1

#define FALSE 0

#define TERMS 3
#define FALL 0
#define WINTER 1
#define SPRING 2

typedef int coinValue;
coinValue quarter = 25, dime = 10;

Q1-3

For more on these topics:

typedef: Kochan, p. 325-327, or
www.cprogramming.com/tutorial/typedef.html

#define: Kochan, p. 299-303, or
www.cprogramming.com/tutorial/cpreprocessor.html

http://www.cprogramming.com/tutorial/typedef.html
http://www.cprogramming.com/tutorial/cpreprocessor.html

Structures

 No objects or dictionaries in C. Structures (structs)
are the closest thing that C has to offer.

 Two ways of grouping data in C:

Array: group several data elements of the same type.

 Access individual elements by position : student[i]

 Structure: group of related data

 Data in struct may be of different types

 Conceptually like dictionaries, syntax like objects

 Access individual elements by name: student.gpa

 Not student[“gpa”]
Structure variable,

where the structure

has a field called gpa
Q4-5

struct syntax

 struct <optional_tag_name> {

<type_1> <fieldname_1> ;

<type_2> <fieldname_2> ;

. . .

<type_n> <fieldname_n> ;

};

 This says that each variable of this struct type has

all these fields, with the specified types

 But structs are best declared in conjunction with

typedef, as on on next slide…

 Declare the type:

typedef struct {

int year;

double gpa;

} Student;

 Make and print a student's info:

Student s;

s.gpa = 3.4;

s.year = 2010;

printf("Year %d GPA %4.2f\n", s.year, s.gpa);

Example: Student struct type

There are other ways to declare

structure types, but this is by far the

best way. Follow its notation carefully.

Note that it just declares the Student

type. It does NOT make a Student or

Student variable.

Declares s to be of type Student and

allocates space (an int and a double) for s.

Initializes the fields of s.

Accesses the fields of s. Note the dot notation for assignment and access. Q6

Define a Point struct type together

 Make a new C Project called PointModule

 File ~ New ~ C Project, then choose Hello World ANSI C Project

 Expand the PointModule project and find the PointModule.c file

beneath the src folder. Rename this PointModule.c file to main.c

 (it will help avoid confusion later)

 Within main.c create a typedef for a Point structure

 After the #include’s, but before the definition of main

 Two fields, named x and y

 Make both x and y have type int

 Follow the pattern from the previous slide,

but do a Point structure (not a Student).

typedef struct {

int year;

double gpa;

} Student;

Declare, initialize and access a

Point variable

 In main:

 Delete the line the wizard included that prints “Hello World”

 Delete the void the wizard put in int main(void)

 Declare a variable of type Point

 Initialize its two fields to (say) 3 and 4

 Print its two fields

Follow the pattern we saw on a previous slide:

Student s;

s.gpa = 3.4;

s.year = 2010;

printf("Year %d GPA %4.2f\n", s.year, s.gpa);

That‟s a struct

 That‟s an easy introduction to using typedef with

struct

 Let‟s make some fancier ways to initialize a struct

Three ways to initialize

a struct variable

Student juan;

juan.year = 2008;

juan.gpa = 3.2;

Student makeStudent(int year, double gpa) {

Student student;

student.year = year;

student.gpa = gpa;

return student;

}

Student juan = makeStudent(2008, 3.2);

Student juan = {2008, 3.2};

(Only allowed when declaring and initializing

variable together in a single statement. Not

recommended, since if the order of the

fields changes, this statement breaks.)

typedef struct {

int year;

double gpa;

} Student;
#1

#2

#3

Define a

function that

constructs a

Student and

returns it

Call the

constructor, in

main or

elsewhere

makePoint

 Write a makePoint function:
Point makePoint(int xx, int yy)

It receives two int parameters and returns a Point

 From within the main function:
 Declare a Point called (say) myPoint2

 Call makePoint and store the result into myPoint2

 Print the values

of the returned

Point‟s two

fields (x and y)

Student makeStudent(int year, double gpa) {

Student student;

student.year = year;

student.gpa = gpa;

return student;

}

Student juan = makeStudent(2008, 3.2);

Follow the pattern

#3 from the previous

slide, repeated here

C Modules

 Grouping code into separate files for the purposes of

organization, reusability, and extensibility

 Header files

 .h file extension

 Typically, .c files will #include your header file

 For publicly available functions, types, #defines, etc.

 Source files

 .c file extension

 The actual C code implementations of functions, etc.

 Needs to #include .h files to use functions that are not

written in this file

Making Modules in C

 The .c and .h file with the same name are called

collectively a module

 Our example:

 PointOperations.c

 PointOperations.h

 Let‟s create this module together in Eclipse

 Right-click src folder, then New Header File

 Call the file PointOperations.h

 Right-click src folder, then New Source file

 Call the file PointOperations.c

Move your code

 Publicly available content goes into .h files

 Private content and code implementations go into .c files

 Move into PointOperations.h

 The code that defines the Point structure

 The prototype for makePoint

 Put these (and all other code in the .h file)

between the #ifndef and #endif:

#ifndef POINTOPERATIONS_H_

#define POINTOPERATIONS_H_

YOUR STUFF HERE

#endif /* POINTOPERATIONS_H_ */

 Move into PointOperations.c

 The makePoint function definition

The compiler automatically

knows that the

implementation of the

function is within the .c file

of this module.

Any .c file that has
#include

"PointOperations.h"

can now call that function –

it‟s publicly available.

Q7-8

Adding the wiring

 main.c and PointOperations.c need to know about

PointOperations.h

 Both need the Point structure definition

main needs the prototype for makePoint

 Add #include‟s into both files, like this:

#include "PointOperations.h"

Note the double quotes, not angle brackets as we have been using.

Angle brackets tell the compiler to look in the place where system files are kept.

Double quotes tell the compiler to look in our project itself.

Summary – PointOperations.h

#ifndef POINTOPERATIONS_H_

#define POINTOPERATIONS_H_

typedef struct {

int x;

int y;

} Point;

Point makePoint(int xx, int yy);

#endif /* POINTOPERATIONS_H_ */

This “include guard”

ensures that the code

in this file is processed

only ONCE, even if

many .c files #include

it. Put an include

guard in all your .h

files, as a matter of

standard practice.

Summary – PointOperations.c

#include "PointOperations.h"

Point makePoint(int xx, int yy) {

Point result;

result.x = xx;

result.y = yy;

return result;

}

Summary – main.c

#include <stdio.h>

#include <stdlib.h>

#include "PointOperations.h"

int main(void) {

Point myPoint = makePoint(3,5);

printf("myPoint.x = %i myPoint.y = %i\n",

myPoint.x,

myPoint.y);

return EXIT_SUCCESS;

}

Try it out

 Save all 3 files, build (Project Build Project) and

run

 Ctrl Shift S, Ctrl B, Ctrl F11 (some keyboard short cuts)

 Works exactly like it did before but using modules!

 Refactoring code always feels a little odd

 So much effort for no visible difference

 A modular approach is much more extensible

 In software engineering, extensibility is a system design

principle where the implementation takes into consideration

future growth.

Extended in class example

 Next we‟re going to do an extented example using

structs, typedef, and modules

 If you get stuck during any part, RAISE YOUR HAND

and get a TA to help you stay caught up

 There will be a bunch of parts, so getting behind

early works out BADLY

 Make sure each works before moving on

 Raise your hand if you have trouble with weird

build errors (it happens!)

Geometry Operations

 To make sure everyone is together checkout the project

Session24_Geometry

 Look at the code and try running the program

 If at ANY point you get a „Binaries not found‟ error

 File ~ Save All [it will be grayed out if all is already saved]

 Project ~ Clean [cleans the project and rebuilds it]

 Examine your console window – if errors remain, fix them

 Run (Ctrl F11) to run code

The Goal

 Sit back and we‟ll talk about what this code WILL

do

 Look in the Tasks window for TODO instructions

 Close other projects so that their TODOs don‟t show up

 For example, close the That‟s Perfect project

Files

 Testing your modules code

 main.c

 Point Operations module

 PointOperations.h

 PointOperations.c

 Line Segment Operations module

 LineSegmentOperations.h

 LineSegmentOperations.c

Main

 Used to test your modules

 Things it already does

 tests Point operations:

 Creates a Point (using makePoint)

 Gets a Point from the console (using getPointFromConsole)

 Prints the Points (using printPoint)

 Call a calculateDistance function and prints the returned distance

 Things you‟ll add

 Test code for LineSegment operations

 After you define a LineSegment structure and write functions that operate

on it

Two Modules

 Functions in the PointOperations module:
Point makePoint(int newX, int newY);

double calculateDistance(Point point1, Point point2);

void printPoint(Point point);

Point getPointFromConsole();

 Functions in the LineSegmentOperations module:

LineSegment makeLineSegment(Point oneEndPoint,

Point otherEndPoint);

void printLineSegment(LineSegment line);

double calculateLength(LineSegment line);

Implement

LineSegmentOperations.h
 For this .h file, you need (as usual):

 Structure definitions relevant to functions of this module

 Prototypes of functions defined in this module

 #include statements as needed for the prototypes

 Finish your quiz, then do the TODO‟s in Session24_Geometry project

 Do them in order: 0, 1, 2, …

 They are SCATTERED throughout the files. After TODO 0,

begin in LineSegmentOperations.h

Q9-10

File ~ Save All
Project ~ Clean
Examine your console window – if errors remain, fix them
Run (Ctrl F11) to run code

Often helpful! Fix errors as you proceed!

A C Program in Multiple Files

 You should have checked out the

Session24_RectangleStructs project from SVN.

 A large program can be organized by separating it

into multiple files.

 Notice the three source files:
 rectangle.h contains the struct definitions and function

signatures used by the other files.

 rectangle.c contains the definitions of the functions that

comprise operations on point and Rectangle objects.

 Session24_RectangleStructs.c contains a main function to

test the various functions of the rectangle module.

 Both of the .c files must include the .h file.

