
CSSE 120 – Introduction to Software DevelopmentSession 21

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: Session21_C_Example1

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

First C program

• Structure of a main file

• Defining and calling functions

• Definite (FOR) loops

• Declaring variables

Project demonstrations

Announcements

 Exam 2 Monday

 As described on the course schedule page

 Homework due Session 23 (Tuesday),

per the course schedule page

 Identify any problems in your Eclipse setup for C

 Reading from course web site

 No ANGEL quiz

Reminder: OPTIONAL C Textbook

 Kochan’s “Programming in C”

 Very readable, like Zelle.

 Recommended highly by two non-CSSE Rose

professors

 We will add more resources on the schedule page

 See the Course Resources page

 Linked from course’s main page

 Explore Python_vs_C_Comparison

document

Parallel
examples
in Python
and C

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

void squareRootTable(int n);

int main() {

squareRootTable(20);

return EXIT_SUCCESS;

}

void squareRootTable(int n) {

int k;

for (k = 1; k <= n; ++k) {

printf("%3i %9.3f\n", k, sqrt(k));

}

}

from math import sqrt

def squareRootTable(n):

for k in range(1, n+1):

print("{:3i} {:9.3f}"

.format(k, sqrt(k)))

def main():

squareRootTable(20)

if __name__ == '__main__':

main()

Comments in C

 Python comments begin with # and continue until the

end of the line.

 C comments begin with /* and end with */.

 They can span any number of lines.

 Some C compilers (including the one we are using)

also allow single-line comments that begin with //.

The inclusion of header files

#include <stdio.h>

#include <math.h>

#include is somewhat like Python's from … import *

The most commonly included files are header files, whose names end with .h

angle brackets mean that it is a standard C header

If we include a file from our own

project, surround it's name with

quotes, as in #include "myFile.h"

A header file usually contains definitions of constants, and

function signatures (without their bodies)

Two lines from math.h (we'll explain later):
#define M_PI 3.14159265358979323846

double sqrt (double);

Other headers: http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html

Focus on the main() Function

#include <stdio.h>

#include <math.h>

int main() {
squareRootTable(10);
return 0;

}

Every C program must have a function named main()

main's return value (In this case 0) is
the exit status of the program. Usually,
we return 0 to indicate successful
completion of the program

In a function definition, we must indicate its return

type before the name of a function, - In this case,

the return type is int

This main() function has an empty formal parameter list

The body of a function definition is enclosed in curly braces { … }

Every simple C statement must be followed by a semicolon

The two statements in the body are just like corresponding Python statements

By looking at main, how can we tell that printRootTable doesn't have to return a value?

printRootTable()'s interface

#include <stdio.h>

#include <math.h>

void printRootTable(int n) {

}

int main() {
squareRootTable(10);
return 0;

}

What is the name of the "return type" of
the printRootTable() function?
What does that mean?

The formal parameter is called n, its type is int

The type of every formal parameter must be declared

As in Python, if there are multiple formal
parameters, they are separated by commas

Note that this function has no return statement. In that case, the return
type must be declared to be void

Notice that we do not provide the type of the actual parameter. Its type is the type of
whatever value we pass in. It must "match" the type of the formal parameter

As in Python, when printRootTable is called, the value of the actual parameter (10)
is used to initialize the formal parameter (n)

(local) variable declaration

#include <stdio.h>

#include <math.h>

void printRootTable(int n) {
int i;

}

int main() {
printRootTable(10);
return 0;

}

i is a local (to the function) variable of the
printRootTable function

Its type is int

Variable declarations must include a type.
An optional initialization is allowed, such as
int i = 17; or int i = n + 5;

A local variable cannot have the same name as a formal parameter of the
same function

Unlike in Python, each C variable's and formal parameter's type
must be declared before the variable can be used

Because the variables i and n are local to printRootTable, you cannot refer
to them from anywhere else in the program

i++

 i++ is an abbreviation for i = i + 1

 which can also be written i += 1

 i-- is an abbreviation for i = i - 1

 which can also be written i -= 1

 Some C-programmers write i++ or i-- as part of a

more complicated expression.

We suggest that you avoid doing that for now.

C's for loop

 init: usually initializes variables used by the loop

 test: if the value of the test is true, the loop body

executes

 update: After execution of the loop body, this code

is executed. Then the test code is evaluated again,

and if true …

#include <stdio.h>

#include <math.h>

void printRootTable(int n) {
int i;
for (i=1; i<=n; i++) {

printf(" %2d %7.3f\n", i, sqrt(i));
}

}

Basic syntax is

for (<init>; < test>; <update>) {
body

}

