
CSSE 120 – Introduction to Software DevelopmentSession 18

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: Session18_BlackJackWithClasses

Plus lots of in-class
time to work on team
project.

Defining classes part 2

• Blackjack with classes

• Defining and exploring the

card class

• Integrating other classes

• Object interaction

Project work:
Work in your team to complete

next milestone

Checkout project: Session18_BlackJackWithClasses

Are you in the Pydev perspective? If not:

• Window ~ Open Perspective ~ Other

then Pydev

Messed up views? If so:

• Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

• Window ~ Show View ~ Other

then SVN ~ SVN Repositories

In your SVN repositories view (tab), expand your
repository (the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong
Workspace. Get help as needed.

Right-click on today’s project, then select Checkout.
Press OK as needed.

The project shows up in the
Pydev Package Explorer

to the right. Expand and browse the modules under
src as desired.

Troubles getting
today’s project?

If so:

Review of Key Ideas

 Constructor:

 Defined with special name __init__

 Called like ClassName()

 Instance variables:

 Created when we assign to them

 Live as long as the object lives

 self formal parameter:

 Implicitly get the value before the dot in the call

 Allows an object to "talk about itself" in a method

Creating Custom Objects:

Defining Your Own Classes

 Custom objects:

 Hide complexity

 Provide another way to break problems into pieces

Make it easier to pass information around

 Example: Cards, Decks, and Hands

 Recall from BlackJack:
suits = ['Clubs', 'Diamonds', 'Hearts', 'Spades']

cardNames = ['Ace', 'Deuce', '3', '4', '5', '6', '7',

'8', '9', '10', 'Jack','Queen', 'King']

class Card:

"""This class represents a card from a standard deck."""

Code to Define a Class
Declares a class

named Card

docstring

describes class,

used by help()

function and by

Eclipse help

class Card:

"""This class represents a card from a standard deck."""

def __init__(self, card, suit):

self.cardName = card

self.suitName = suit

Code to Define a Class
Special name, __init__

declares a constructor

Special self parameter

is the first formal

parameter of each

method in a class.
self always refers to

the current object

Card

def __init__(self,card,suit):

self.cardName = card

self.suitName = suit

Create instance variables just

by assigning to them

A sample constructor call:

c = Card('Ace', 'Hearts')

'Ace'

'Hearts'

cardName ______

suitName ______

c

class Card:

"""This class represents a card from a standard deck."""

def __init__(self, card, suit):

self.cardName = card

self.suitName = suit

def getValue(self):

"""Returns the value of this card in BlackJack.

Aces always count as one, so hands need to adjust

to count aces as 11."""

pos = cardNames.index(self.cardName)

if pos < 10:

return pos + 1

return 10

Code to Define a Class

self parameter again, no

other formal parameters

use self.<varName> to

read instance variable

A sample method call:

c.getValue()

Card…

docstring for method

class Card:

"""This class represents a card from a standard deck."""

def __init__(self, card, suit):

self.cardName = card

self.suitName = suit

def getValue(self):

"""Returns the value of this card in BlackJack.

Aces always count as one, so hands need to adjust

to count aces as 11."""

pos = cardNames.index(self.cardName)

if pos < 10:

return pos + 1

return 10

def __str__(self):

return self.cardName + " of " + self.suitName

Code to Define a Class

Special __str__ method returns

a string representation of an object

Sample uses of __str__ method:
print c

msg = "Card is " + str(c)

class Card:

"""This class represents a card from a standard deck."""

def __init__(self, card, suit):

self.cardName = card

self.suitName = suit

def getValue(self):

"""Returns the value of this card in BlackJack.

Aces always count as one, so hands need to adjust

to count aces as 11."""

pos = cardNames.index(self.cardName)

if pos < 10:

return pos + 1

return 10

def __str__(self):

return self.cardName + " of " + self.suitName

Stepping Through Some Code
Sample use:
card = Card('7','Clubs')

print card.getValue()

print card

Another Example:

Lists of Objects, Lists in Object

class CardCollection:

"""This class represents a collection of cards, either a

single hand or the whole deck."""

def __init__(self, newDeck = False):

"""Creates a new collection of cards. By default

it's empty, but if newDeck is True then the

collection is a full standard deck."""

self.name = None

self.cardList = []

self.hideFirst = True

if newDeck:

Create an entire deck of cards

for s in suits:

for c in cardNames:

self.insert(Card(c, s))

...

Optional formal parameter, can

construct a CardCollection three ways:
deck = CardCollection(True)

hand = CardCollection(False)

hand = CardCollection()

Instance variable
containing a list

Self call, constructor calls another
method of the CardCollection class

Another Example (continued):

Lists of Objects, Lists in Object

class CardCollection:

"""…"""

def __init__(self, newDeck = False):

"""…"""

self.name = None

self.cardList = []

self.hideFirst = True

if newDeck:

Create an entire deck of cards

for s in suits:

for c in cardNames:

self.insert(Card(c, s))

def insert(self, card):

"""Adds the given card to this collection."""

self.cardList.append(card)

insert method uses append()

method to mutate the list instance
variable

We can put objects into lists.

def getValue(self):

"""Returns the best score for this collection

in the game of BlackJack."""

score = 0

hasAce = False

for card in self.cardList:

val = card.getValue()

score += val

if val == 1:

hasAce = True

if score <= winningScore - 10 and hasAce:

score += 10

return score

Why not just use a list of cards?

class CardCollection:

…

Iterating over the list

Calling methods on

the objects stored in
the list

Work on your team project

 Meet with your project team

 Finish up what is due for session 18 milestone

 Continue working on next milestone

 Decide on time/venue for next meeting

