
CSSE 120 – Introduction to Software DevelopmentSession 17

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: Session17_MovingSmileys

Plus lots of in-class
time to work on team
project.

Defining classes part 1

• Review objects & object

terminology

• Defining your own classes

• Instantiating and using objects

• Object interaction

Project work:
Work in your team to complete

next milestone

Checkout today’s project: Session17_MovingSmileys

Are you in the Pydev perspective? If not:

• Window ~ Open Perspective ~ Other

then Pydev

Messed up views? If so:

• Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

• Window ~ Show View ~ Other

then SVN ~ SVN Repositories

In your SVN repositories view (tab), expand your
repository (the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong
Workspace. Get help as needed.

Right-click on today’s project, then select Checkout.
Press OK as needed.

The project shows up in the
Pydev Package Explorer

to the right. Expand and browse the modules under
src as desired.

Troubles getting
today’s project?

If so:

Review: What is an Object?

 An Object is an active data-type:

 knows things about itself

 fields

 a.k.a. instance variables (or fields)

 can be asked to (based on what it knows)

 do things

 mutator methods

 provide info about itself and/or other objects that it knows

about

 accessor methods

Review: Object Terminology

 Objects are data types that

might be considered active

 They store information

in instance variables

 They manipulate their data

through methods

 Objects are instances of

some class

 Objects are created by

calling constructors

 UML class diagram:

x

y

…

Point

getX()

getY()

move(dx,dy)

…

Instance variables

written here

Methods

written here

Key Concept!

 A class is an "object factory"

 Calling the constructor tells the classes to make a new

object

 Parameters to constructor are like "factory options",

used to set instance variables

 Or think of class like a "rubber stamp"

 Calling the constructor stamps out a new object shaped

like the class

 Parameters to constructor "fill in the blanks". That is,

they are used to initialize instance variables.

Review: Using Objects in Python

WIDTH = 400

HEIGHT = 50

REPEAT_COUNT = 20

PAUSE_LENGTH = 0.25

win = GraphWin(‘Saints Win!', WIDTH, HEIGHT)

p = Point(WIDTH/2, HEIGHT/2)

t = Text(p, ‘Saints—2010 Super Bowl Champs!')

t.setStyle('bold')

t.draw(win)

nextColorIsRed = True

t.setFill('blue')

for i in range(REPEAT_COUNT):

sleep(PAUSE_LENGTH)

if nextColorIsRed:

t.setFill('red')

else:

t.setFill('blue')

nextColorIsRed = not nextColorIsRed

win.close()

Example

 p = Point(200, 100)

 t = Text(p, 'Go Colts!')

Point

x _______

y _______

fill _______

outline _______

getX() …

getY() …

…

200

100

'black'

'black'

Text

anchor _______

text _______

getAnchor() …

getText() …

setText(text)

setStyle(style)

…

p

'Go Colts'

Point

x _______

y _______

fill _______

outline _______

getX() …

getY() …

…

200

100

'black'

'black'

t

This is a clone of p

Creating Custom Objects:

Defining Your Own Classes

 Custom objects:

 Hide complexity

 Provide another way to break problems into pieces

Make it easier to pass information around

 Example:

Moving "Smiley" class.
 Let’s create our own

custom class and use it to

instantiate objects.

 Use modules in project you

checked out earlier

Coding MovingSmileys

 Create constructor noting default parameters

 Defaults are size, color, and isSmiling

 Study the code for creating parts

 Explore how parts list is created

 Create draw() method and run scene1

 Add move() method, and run scene1

 Add smile and frown methods, which need to know about size

 Run scene 2, point out that 3 other methods needed for

collisions to work

Review of Key Ideas

 Constructor:

 Defined with special name __init__

 Called like ClassName()

 Instance variables:

 Created when we assign to them

 Live as long as the object lives

 self formal parameter:

 Implicitly get the value before the dot in the call

 Allows an object to "talk about itself" in a method

Work on your team project

 Meet with your project team

 Finish up what is due for session 17 milestone

 Continue working on next milestone

 Decide on time/venue for next meeting

 Next session

 Another example of defining classes

More project work

