
CSSE 120 – Introduction to Software DevelopmentSession 16

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: Session16_Dictionaries

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Dictionaries

• Data collection

• Various methods

• Uses of dictionaries

• File loop pattern

Project kickoff:
In other slideset

Checkout today’s project: Session16_Dictionaries

Are you in the Pydev perspective? If not:

• Window ~ Open Perspective ~ Other

then Pydev

Messed up views? If so:

• Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

• Window ~ Show View ~ Other

then SVN ~ SVN Repositories

In your SVN repositories view (tab), expand your
repository (the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong
Workspace. Get help as needed.

Right-click on today’s project, then select Checkout.
Press OK as needed.

The project shows up in the
Pydev Package Explorer

to the right. Expand and browse the modules under
src as desired.

Troubles getting
today’s project?

If so:

Data Collections

 Frequently several individual pieces of data are

related

 We can collect them together in one object

 Examples:

 A list or tuple contains an ordered sequence of items

 A string contains an ordered sequence of characters

 A custom object. Example from zellegraphics: A Line

object contains two endpoints, a color, and the window

in which it is drawn

 A dictionary (defined soon) contains key-value pairs

List - review

 an ordered collection of items

 Usually homogeneous (all items of the same type),

but Python does not require this

 Access is by position (index) in the list

 >>> animals = ['dog', 'cat', 'cow']

>>> animals[1]

'cat'

>>> animals[1:3]

['cat', 'cow']

>>> animals[1] = ['pig']

>>> animals

['dog', ['pig‘], 'cow']

More list mutations

 Items can be added, removed, or replaced

 >>> animals = ['dog', 'cat', 'cow']

>>> animals.append('pig')

>>> animals

['dog', 'cat', 'cow', 'pig']

>>> animals[1:3] = ['cow', 'cat', 'goat']

>>> animals

['dog', 'cow', 'cat', 'goat', 'pig']

>>> animals[1:2] = []

>>> animals

['dog', 'cat', 'goat', 'pig']

Q1

Dictionary

 A collections object in which each item is a key-

value pair

 No two items may have the same key

 So a dictionary is a function (in the mathematical sense)

 Items are not stored in any particular order

 Typically all keys are same type (not required)

 Keys must be immutable (i.e., number, string, tuple)

 Access to items is by key

 key's purpose is similar to list's index

 syntax also similar

Your turn

 Open PyDev console and make a quick dictionary

 Try the following:

>>> myDict = {'name':'Dave', 'gpa':3.5}

>>> print (myDict)

>>> myDict['name']

>>> myDict['gpa']

>>>dir(dict)
Access items

by keys

Dictionary methods

Assume that there is a dictionary named dict1

 dict1.get(k [,d]) if k is a key in the dictionary return

the value for that key, else return d.

d is an optional parameter

 dict1.has_key(k) True if dict1 has a key k, else False

 dict1.items() list of dict1's (key, value) pairs, as tuples

 dict1.keys() list of dict1 's keys

 dict1.pop(k [,d]) remove key and return value

 dict1.values() list of dict1 's values

 Open the module1_dictionaryMethods.py

Another dictionary example

 gradeLowestScore = { } # empty dictionary

gradeLowestScore['A'] = 89.5

gradeLowestScore['B+'] = 84.5

gradeLowestScore['B'] = 79.5

gradeLowestScore['C+'] = 74.5

gradeLowestScore['C'] = 69.5

gradeLowestScore['D+'] = 64.5

gradeLowestScore['D'] = 59.5

gradeLowestScore['F'] = 0.0

 difference = gradeLowestScore['B']-

gradeLowestScore['C']

Q2

dict initialization & operations

 >>> gradeLowestScore = {'A':89.5, 'B+':84.5, 'B':79.5,

'C+':74.5, 'C':69.5, 'D+':64.5, 'D': 59.5, 'F': 0.0}

>>> gradeLowestScore['C']

69.5

>>> gradeLowestScore['C'] = 68.0 # new value for key 'C'

>>> gradeLowestScore.keys()

dict_keys(['A', 'C+', 'C', 'B', 'D+', 'F', 'D', 'B+'])

>>> gradeLowestScore.values()

dict_values([89.5, 74.5, 68.0, 79.5, 64.5, 0.0, 59.5, 84.5])

>>> gradeLowestScore.items()

dict_items([('A', 89.5), ('C+', 74.5), ('C', 68.0), ('B',

79.5), ('D+', 64.5), ('F', 0.0), ('D', 59.5), ('B+', 84.5)])

>>> gradeLowestScore.pop('C') # remove 'C' item

68.0

>>> 'C' in gradeLowestScore

False

>>> 'D' in gradeLowestScore

True

Q3-4

dict's get method is friendly

 What if we try to find the lowest score for an "E"

grade?

 >>> gradeLowestScore['E']

Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>

gradeLowestScore['E']

KeyError: 'E'

 The get method has a similar purpose, but lets us

provide a value to return if the key we search for is

not in the dictionary:

 >>> gradeLowestScore.get('E', 'No such key')

‘No such key'

Two main dictionary uses

 A collection of similar objects

 Designed for fast lookup by key

 Storing different properties of a single object

Use 1: Collection of similar objects

 Examples:

 A movie database in which we use the title as the key

and look up the director.

 A phone database in which we use the person’s name

as the key and look up the phone number

 In-class exercise

 in module2_concordance.py module

 Create a concordance for a text file.

 This is just a list of words in the file and the line numbers

on which each word occurs

Q5-6

Use 2: Properties of a single object

 Represent a card (blackjack) as a dictionary

 properties: 'cardName', ' suit', ' value‘

 Use module3_BlackjackWithDictionaries module

A card is represented by a dictionary with keys

cardName, suit, and value

def makeCard (cardName, suit):

card = {}

card['suit'] = suit

card['cardName'] = cardName

card['value'] = cardValue(cardName)

return card

