
CSSE 120 – Introduction to Software DevelopmentSession 15

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Don’t need to go to the course Schedule Page today

5. Slides for today will be available on Angel after class

6. Check out today’s project: None until hw

Plus in-class time
working on and
practicing these
AND previous
concepts.

Design, Simulation,

Testing

• Designing a larger program

• Implementing a larger
program

• Top-down design

Blackjack card game

• Top-level algorithm

• Design and implement using
functional decomposition

• Practice using top-down
design

Designing/implementing a larger program

 Until now, our programs have been small and simple

 Possible exceptions: pizzPolyStar, speedReading

 For larger programs, we need a strategy to help us

be organized

 One common strategy: top-down design

 Break the problem into a few big pieces (functions)

 Break each piece into smaller pieces

 Eventually we get down to manageable pieces that do

the details

Top-level algorithm for Blackjack

 Create initial card deck

 Deal initial cards

 Display game state

 Player plays until busted or chooses to stop

 Dealer plays until required to stop

 Report who wins

Top-level functions called by main()

 newDeck()

 Creates and returns a complete deck of cards

 initialDeal(deck)

 deals cards from the deck to each player, returns the hands

 displayGameState(playerHand, dealerHand, showAll)

 shows visible cards and player's scores. showAll is boolean

 playerPlays(playerHand, dealerHand, deck)

 Allows player to choose hit or stay

 dealerPlays(playerHand, dealerHand, deck)

 Dealer does hit or stay, based on the rules

 reportWinner(playerHand, dealerHand)

 Determines and displays who wins.

Complete code for main()

def main():

deck = newDeck()

player, dealer = initialDeal(deck)

displayGameState(player, dealer, False)

playerPlays(player, dealer, deck)

if handScore(player) > winningScore:

print("BUSTED! You lose.“)

else:

print("Now Dealer will play ...")

dealerPlays(player, dealer, deck)

reportWinner(player, dealer)

displayGameState(player, dealer, True)

Top-level Structure Diagram

main

newDeck

initialDeal

playerPlays

dealerPlays

reportWinner

displayGameState

deck

deck

dealerHand,

playerHand

dealerHand,

playerHand,

deck

dealerHand,

playerHand,

deck

dealerHand,

playerHand,

showAll

dealerHand,

playerHand

Key:
formal parameters

return values
handScore

hand
score

Q1

Some preliminary data values

Define some constants used by many functions

suits = ['Clubs', 'Diamonds', 'Hearts', 'Spades']

cardNames = ['Ace', 'Deuce', '3', '4', '5',

'6', '7', '8', '9', '10',

'Jack', 'Queen', 'King']

winningScore = 21

dealerMustHoldScore = 16

Card is represented by a list: [cardName, suit]

Examples: ['Ace','Clubs'] or ['7','Diamonds']

A hand or a deck is a list of cards.
A List

of lists Q2

Designing newDeck()

 Write steps of newDeck() in English

 Write the code

 Refer to:

 Data values on handout

 Structure diagram on handout

newDeck()–returns a complete deck

 start with an empty list

 for each cardName/suit pair

 generate a card with that name and suit

 add card to list

 Return the list # Create an entire deck of cards

def newDeck():

deckList = []

for s in suits:

for c in cardNames:

deckList.append([c, s])

return deckList

Designing initialDeal(deck)

 Work in groups of 4 at a whiteboard

 Write steps for initialDeal(deck) function in English

 Write the code

 Take about 10 minutes

 Refer to:

 Data values on handout

 Structure diagram on handout

 Do you need new functions? Add them to your

structure chart

initialDeal(deck)-returns two hands

 start with two empty hands

 deal two cards to each hand

 return the two hands

Deal two cards to each player.

def initialDeal(deck):

playerHand = []

dealerHand = []

cardsToDeal = 2

for i in range(cardsToDeal):

dealTo(playerHand, deck)

dealTo(dealerHand, deck)

return playerHand, dealerHand

initialDeal Structure Diagram

main

initialDeal

dealTo

deck,

hand

dealerHand,

playerHand

deck

Key:
formal parameters

return values

Deal two cards to each player.

def initialDeal(deck):

playerHand = []

dealerHand = []

cardsToDeal = 2

for i in range(cardsToDeal):

dealTo(playerHand, deck)

dealTo(dealerHand, deck)

return playerHand, dealerHand

Q3-4

dealTo(hand, deck)

 Pick a random card from the deck and move it to

the hand

deal a card from this deck and place it in this hand.

def dealTo(hand, deck):

hand.append(dealCard(deck))

initialDeal Structure Diagram

main

initialDeal

dealTo

dealCard

deck,

hand

dealerHand,

playerHand

deck

deck card

Remove a random card from

the deck and return it

def dealCard(deck):

pos = randrange(len(deck))

card = deck[pos]

deck.remove(card)

return card

Key:
formal parameters

return values

Let's skip ahead to dealerPlays()

main

newDeck

initialDeal

dealTo

dealCard

playerPlays
dealerPlays

reportWinner

displayGameState

dealerHand,

playerHand,

deck

Key:
formal parameters

return values

handScore

Designing dealerPlays()

 Work in groups of 4 at a whiteboard

 Write steps of dealerPlays() in English

 Write the code:

 Do you need new functions? Add them to your

structure chart

 Take about 10 minutes

dealerPlays

 while dealerMustTakeaHit

 deal a card to Dealer's hand

Dealer takes hits until no more hits allowed.

def dealerPlays(player, dealer, deck):

displayGameState(player, dealer, True)

while dealerHit(dealer):

sleep(3)

print("Dealer takes a hit")

dealTo(dealer, deck)

displayGameState (player, dealer, True)

Determine whether dealer "takes a hit" (gets another card).

def dealerHit(dealerHand):

dealerScore = handScore(dealerHand)

return dealerScore < dealerMustHoldScore

Note use of

dealTo()

function

Design so far

main

newDeck

initialDeal

dealTo

dealCard

playerPlays

dealerPlays

reportWinner

displayGameState

dealerHand,
playerHand,
deck

dealerHit

dealerHand hit?

(boolean)

handScore

dealerHand
score

(int)

Key:
formal parameters

return values

Code for handScore()

Calculate the score for the whole hand.

def handScore(hand):

score = 0

hasAce = False

for card in hand:

val = cardValue(card)

score += val

if val == 1:

hasAce = True

if score <= winningScore - 10 and hasAce:

score = score + 10

return score
What if they have

two or more aces?

Code for cardValue()

calculate how many points this card is worth.

Face cards count 10.

Ace Counts 1 (or 11, but that adjustment is

made at the handScore level).

def cardValue(card):

name = card[0]

pos = cardNames.index(name)

if pos < 10: # if not a face card.

return pos + 1

return 10

What we have developed so far

main

newDeck

initialDeal

dealTo

dealCard

playerPlays
dealerPlays

reportWinner

dealerHit

displayGameState

handScore

cardValue

Remaining to be done: details of

PlayerPlays , reportWinner,

displayGameState and functions

that they call

Bottom-up Testing

 If we wrote all of this code and tried to run it all

together, there would probably be so many errors

that it would be very hard to track down their

causes

 So instead of testing the whole program at once, we

want to test each function individually.

 To do this, we want to start with functions at the

bottom of the structure chart, because they do not

depend on other functions

 Tests of individual functions are called Unit Tests

Complete Structure Diagram

main

newDeck

initialDeal

dealTo

dealCard

playerPlays
dealerPlays

reportWinner

playerHit
dealerHit

displayGameState

cardString

handScore

cardValue

displayHand

Remaining code is on the
following slides

The display functions

Show the contents of both players' hands.

def displayGameState(playerHand, dealerHand, gameOver):

displayHand('Dealer', dealerHand, gameOver)

displayHand('Player', playerHand, True)

print out the contents of this hand. If the hand is the dealer's

and the player hasn't played yet, showAll will be False.

def displayHand(name, hand, showAll):

print(name + "'s hand:", end= " ")

if showAll:

print("(score is {})“.format(handScore(hand)))

print cardString(hand[0])

else:

print()

print(' Face Down‘)

print the rest of the hand.

for i in range(1, len(hand)):

print(cardString(hand[i]))

return a string that represents the given card.

def cardString(card):

return ' ' + card[0] + " of " + card[1]

playerPlays and PlayerHit

Player takes hits until Busted or stops requesting

hits.

def playerPlays(player, dealer, deck):

while playerHit(handScore(player)):

dealTo(player, deck)

displayGameState(player, dealer, False)

Ask player whether she wants another card.

def playerHit(playerScore):

if playerScore > winningScore:

return False

answer = input("Hit? (Y/N) ")

return answer[0].lower() == 'y'

reportWinner function

Figure out who won.

def reportWinner(player, dealer):

playerScore = handScore(player)

dealerScore = handScore(dealer)

if dealerScore > winningScore:

print("DEALER IS BUSTED, YOU WIN")

elif dealerScore > playerScore:

print("DEALER WINS")

else:

print("YOU WIN!")

