
CSSE 120 – Introduction to Software DevelopmentSession 14

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: Session14_NestedLoops

Top Down Design

• The BlackJack game, e.g.,

Part 1

• Designing a larger program

• Top-down design

More Compute-in-a-

Loop Patterns

• Nested Loops

• For, While

• Wait-for-event Loops

Plus in-class time
working on and
practicing these AND
other concepts.

Outline of Today’s Session

 Exam 1 Redux

 Questions?

 How to design a larger program

 Top-down design

What is it?

 An example of doing it: the BlackJack program

 Compute-in-a-Loop Patterns:

 for, while (interactive, sentinel), loop-and-a-half

(sentinel), file

 Nested Loops

 The wait-until-event Loop Pattern

Checkout today’s project:
Session14_NestedLoops

Exam Redux

Team preference survey

 Beginning with Session 16, you will be working on a

team project.

 This survey is a chance for you to tell us your

preferences for who you want to work with.

 Also has questions about your “work style” to help us

form teams.

 Suggestion: prefer people whose understanding level is

similar to yours.

 Fill out the survey, even if you have no preference.

 Due before the next class meeting.

Designing/implementing a larger program

 Until now, our programs have been small and simple

 Possible exceptions: pizzPolyStar, speedReading

 For larger programs, we need a strategy to help us

be organized

 One common strategy: top-down design

 Break the problem into a few big pieces (functions)

 Break each piece into smaller pieces

 Eventually we get down to manageable pieces that do

the details

Q1-2

Example: Two-player blackjack (21)

 Uses a regular deck of cards

 Player and Dealer each initially get two cards

 Player can see both of own cards, but only one of

dealer's cards

 Suit is irrelevant, only denomination determines

points per card:

 Ace: one point or 11 points.

 2-10: point value is the number of the card.

 face card: 10 points

 Object: Get as close as you can to 21 points in your

hand without going over Q3a

Blackjack illustration

 We won't develop

a GUI today, but

this image from a

GUI Blackjack

game* illustrates

how the game

goes

 * from Lewis and Chase,

Java Software Structures

Blackjack play

 Player has the option to take one or more “hits”

(cards) or to “stay” (keep the current hand)

 If a hit increases the Player's score to more than 21,

(s)he is “busted” and loses immediately

 If the Player is not busted, the Dealer plays, but with

more constraints

 If the Dealer's score is less than 16, (s)he must take a hit

 Otherwise, (s)he must stay

 If neither player is busted, the one with the highest-

scoring hand wins

 If both have the same score, it is a tie and no money changes hands Q3b

Program specifications

 The blackjack program will allow a single player to

play one hand of blackjack against the computer,

starting with a fresh deck of cards

 It will have a simple text interface

 It will repeatedly display the state of the game and

ask the Player whether (s)he wants a hit

 Once the Player says NO, the Dealer will play

 The results will be displayed

Initial design

 Similar to the top-level design of the Racquetball

simulator from the textbook, we want to break up

the blackjack algorithm into a few high-level tasks

 With one or two other people, quickly brainstorm

what those tasks might be

Q4

Complete code for main()

def main():

deck = newDeck()

player, dealer = initialDeal(deck)

displayGameState(player, dealer, False)

playerPlays(player, dealer, deck)

if handScore(player) > winningScore:

print("BUSTED! You lose.“)

else:

print("Now Dealer will play ...")

dealerPlays(player, dealer, deck)

reportWinner(player, dealer)

displayGameState(player, dealer, True)

Summary of Loop Patterns

 The compute-in-a-loop pattern

 Six basic compute-in-a-loop patterns:

 For loop

 While loop

 Interactive loop

 Sentinel loop using a special value as the sentinel

 Sentinel loop using no-input as the sentinel

 Loop-and-a-half

 Combined with use of no-input as the sentinel

 File loop

 Nested loops (this session)

 Wait-for-event loop (this session)

Nested Loops

 A nested if is an if inside an if.

 A nested loop is a loop inside a loop.

 Example:

 What does it print?

 Let’s trace the module1_multiplicationTables.py

module in the debugger

 What if we change the second range expression to

range(i + 1)

for i in range(4):

for j in range(3):

print(i, j, i * j)

Q6-8, turn in quiz

Nested Loop Practice

 You will do several exercises that involve writing

functions to generate patterned output.

 In each, you will accumulate each line's output in a string,

then print it.

 Place this code inside module2_nestedLoopPatterns.py in

today’s project

Nested Loops – Class Exercise

 First, we will write a function to generate a pattern of

asterisks like

 We will write a function called
rectangleOfStars(rows, columns)

 To produce the above pattern, we would call it with

parameters 3 and 11.

Nested Loop Practice – Your Turn

 Complete these definitions and test your functions

 triangleOfStars(n) produces a triangular pattern of

asterisks. For example, triangleOfStars(6) produces
*

**

 triangleOfSameNum(n) produces a triangular pattern of

numbers. For example, triangleOfSameNum(5) produces
1

22

333

4444

55555

If you finish these exercises in class,

continue with the remaining homework

problems.

Hint: Use the same idea as the previous example. Start

each line with an empty string. As you go through your

inner loop, accumulate the line's characters. Print the line,

then go on to the next iteration of the outer loop.

Wait-for-event

Loop Pattern

pre-loop computation

while [there is more data]:

get data

compute using the data

post-loop computation

pre-loop computation

while [the event has NOT occurred]:

sleep for a bit

post-loop computation

Examine and run the
module3_waitForEventLoopPattern.py

module in the project you checked out today.

