
CSSE 120 – Introduction to Software DevelopmentSession 13

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: Session13_LoopPatterns

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Loop Patterns

• For loop pattern

• While loop patterns

• Loop-and-a-half loop pattern

• File loop pattern

Practice:
with loop patterns

Checkout today’s project: Session13_LoopPatterns

Are you in the Pydev perspective? If not:

• Window ~ Open Perspective ~ Other

then Pydev

Messed up views? If so:

• Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

• Window ~ Show View ~ Other

then SVN ~ SVN Repositories

In your SVN repositories view (tab), expand your
repository (the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong
Workspace. Get help as needed.

Right-click on today’s project, then select Checkout.
Press OK as needed.

The project shows up in the
Pydev Package Explorer

to the right. Expand and browse the modules under
src as desired.

Troubles getting
today’s project?

If so:

Recap: Two main types of loops

 Definite Loop

 The program knows before the loop starts how many times

the loop body will execute

 Implemented in Python as a for loop. Typical patterns include:

• Counting loop, perhaps in the Accumulation Loop pattern

• Loop through a sequence directly

• Loop through a sequence using indices

 Cannot be an infinite loop

 Indefinite loop

 The body executes as long as some condition is True

 Implemented in Python as a while statement

 Can be an infinite loop if the condition never becomes False

 Python's for line in file: construct

Indefinite loop that looks syntactically like a definite loop!

Recap:

Definite Loops

 Definite loop

The program knows

before the loop starts

how many times the loop

body will execute

 Counted loop

Special case of definite loop

where the sequence can be

generated by range()

 Implemented in Python as

a for loop

 Example to the right shows

3 typical patterns

Examples of definite loops :

• All three of these examples illustrate the
Accumulation Loop pattern

• The first example is a counted loop

• The second and third examples are equivalent
ways to loop through a sequence

 Second example is NOT a counted loop

 Third example IS a counted loop

sum = 0

for k in range(10):

sum = sum + (k ** 3)

sum = 0

for number in listOfNumbers:

sum = sum + number

sum = 0

for k in range(len(listOfNumbers)):

sum = sum + listOfNumbers[k]

Recap: Indefinite Loops

 Number of iterations is not known when loop starts

 Is typically a conditional loop

 Keeps iterating as long as a certain condition remains True

 The conditions are Boolean expressions

 Typically implemented using a while statement

sum = 0

k = 0

while k < 10:

sum = sum + (k ** 3)

k = k + 1

sum = 0

for k in range(10):

sum = sum + (k ** 3)

Indefinite loop that computes the same sum as the definite loop

Definite loop

Outline of Loop Patterns

 The compute-in-a-loop pattern

 Six basic compute-in-a-loop patterns:

 For loop

 While loop

 Interactive loop

 Sentinel loop using a special value as the sentinel

 Sentinel loop using no-input as the sentinel

 Loop-and-a-half

 Combined with use of no-input as the sentinel

 File loop

 Nested loops (next session)

 Wait-for-event loop (next session) Q1

Loop patterns

 We have seen the input-compute-output pattern:

 A cousin that pattern is the compute-in-a-loop pattern:

Input from the user or
as a parameter

Or return the result

get data

compute using the data

print the result

We’ve seen a special case of this
pattern: the Accumulator Loop
pattern. Today we will examine
other special cases.

pre-loop computation

repeatedly:

get data

compute using the data

post-loop computation

Six basic compute-in-a-loop patterns

pre-loop computation

for [amount of data] :

get data

compute using the data

post-loop computation

pre-loop computation

while [there is more data]:

get data

compute using the data

post-loop computation

pre-loop computation

while True:

get data

if data signals end-of-data:

break

compute using the data

post-loop computation

pre-loop computation

for line in file:

get data from line

compute using the data

post-loop computation

For loop While loop

Loop and a Half File loop

Nested loops Wait-for-event loopNext time

 Open the

module1_averageUserCount.py

module and execute it together

 When does the loop terminate?

 Is this the best way to make the user enter input?

Why?

Why not?

For loop pattern
pre-loop computation

for [amount of data] :

get data

compute using the data

post-loop computation

This approach is a lousy way to get numbers
that the user supplies, because:

The user has to count in advance how many
numbers they will supply.

While loop pattern #1

 One version: an

interactive loop

pre-loop computation

while [there is more data]:

get data

compute using the data

post-loop computation

set a flag indicating that there is data

other pre-loop computation

while [there is more data]:

get data

compute using the data

ask the user if there is more data

post-loop computation

Q2

This approach is also a lousy way to get
numbers that the user supplies, because:

The user has to answer repeatedly the “more
numbers?” question.

Examine and run the
module2_averageMoreData.py

module in the project you
checked out today.

While loop pattern #2

 Better version:

use a sentinel

pre-loop computation

while [there is more data]:

get data

compute using the data

post-loop computation

get data

other pre-loop computation

while [data does not signal end-of-data]:

compute using the data

get data

post-loop computation

Q3

Examine and run the
module3_averageSentinel.py

module in the project you
checked out today.

This approach (using negative numbers as the
sentinel) has a flaw. What is that flaw?

Answer: You cannot have negative numbers
included in the average!

User signals end of data by a
special “sentinel” value.

Note that the sentinel value
is not used in calculations.

While loop pattern #3

 Best (?) version:

use no-input as the sentinel

Examine and run the
module4_averageOtherSentinel.py
module in the project you checked

out today.

pre-loop computation

while [there is more data]:

get data

compute using the data

post-loop computation

get data as a string

other pre-loop computation

while [data is not the empty string]:

data = float(data)

compute using the data

get data as a string

post-loop computation

User signals end of data by
pressing the Enter key in

response to a input.

The sentinel value is again not
used in calculations.

Above converts the data to a float, but other
problems might do other conversions.

Loop-and-a-half

pattern

 Use a break

Examine and run the
module5_averageLoopAndAHalf.py module

in the project you checked out today.

pre-loop computation

while True:

get data as a string

if data == "":

break

data = eval(data)

compute using the data

post-loop computation

Here we continue to use no-input as
the sentinel.

The break command exits the
enclosing loop.

This pattern is equivalent to the pattern on the
preceding slide. Some prefer one style; others prefer
the other. You may use whichever you choose.

pre-loop computation

while True:

get data

if data signals end-of-data:

break

compute using the data

post-loop computation

Q4

Escaping from a loop

 break statement ends the loop immediately

 Does not execute any remaining statements in loop body

 continue statement skips the rest of this iteration of

the loop body

 Immediately begins the next iteration (if there is one)

 return statement ends loop and function call

May be used with an expression

 within body of a function that returns a value

Or without an expression

 within body of a function that just does something

Q5-6

File loop pattern
pre-loop computation

for line in file:

get data from line

compute using the data

post-loop computation

This loop looks like a definite loop but isn’t:
it starts reading lines in the file without knowing how many
lines it will read before it reaches the end of the file.

Examine and run the
module6_averageFile.py
module in the project you

checked out today.

pre-loop computation

Open file save as fileObject

for line in fileObject:

process line, which is data

as a string

compute using the data

Close file

post-loop computation

Q7

Summary of Loop Patterns

 The compute-in-a-loop pattern

 Six basic compute-in-a-loop patterns:

 For loop

 While loop

 Interactive loop

 Sentinel loop using a special value as the sentinel

 Sentinel loop using no-input as the sentinel

 Loop-and-a-half

 Combined with use of no-input as the sentinel

 File loop

 Nested loops (next session)

 Wait-for-event loop (next session)

Exercise: While Loops –
module7_clickInsideCircle.py

 In the

module7_clickInsideCircle.py

module in the project you

checked out today, you will

implement the following game:

 The computer shows a circle that jumps around in a window.

(The user chooses how many seconds between jumps, which corresponds to the

game’s difficulty.) The user tries to click inside the moving circle.

As long as the user misses, the computer displays “XX misses” in the window,

where XX is the number of failed clicks so far. When the user finally clicks

inside the circle, the computer displays “BULLSEYE after XX misses”, where XX is

the number of failed clicks.

 What loop pattern seems best for this problem?

 Consider using the sentinel pattern, where the sentinel is any point that is

inside the circle.

Individual Exercise on Using loops

 Implement function getList() in module

module8_listMax.py that

 Prompts the user to enter numbers, one at a time

 Uses a blank line (<ENTER>) as sentinel to terminate input

 Accumulates the numbers in a list

 Returns the list of numbers

 Implement function main() that

 tests the above function

 prints the list of numbers entered

Q8, turn in quiz

Individual Exercise on Using loops

 Implement function maxList() in module

module8_listMax.py that

 uses a loop to calculate the maximum value of the numbers in the

given list

 Returns the maximum value

 Augment function main() to

 Test above function

 Prints the maximum value of the list of numbers

Start homework

 When you are through with your individual exercise

commit your solutions to your SVN repository

 Start working on homework 13

