
CSSE 120 – Introduction to Software DevelopmentSession 11

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: 11-WhileLoops

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Exam 1 preview

• Date and time of exam

• Exam location

• Format of exam (paper part
+ programming part)

• How to prepare for the exam

Indefinite Loops

while statements

break statements

Checkout today’s project: 11-WhileLoops

Are you in the Pydev perspective? If not:

• Window ~ Open Perspective ~ Other

then Pydev

Messed up views? If so:

• Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

• Window ~ Show View ~ Other

then SVN ~ SVN Repositories

In your SVN repositories view (tab), expand your
repository (the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong
Workspace. Get help as needed.

Right-click on today’s project, then select Checkout.
Press OK as needed.

The project shows up in the
Pydev Package Explorer

to the right. Expand and browse the modules under
src as desired.

Troubles getting
today’s project?

If so:

Outline of Today’s Session

 Exam 1

What to bring

 How to prepare

 Questions?

 5 Big Ideas for Exam 1

 Definite Loops (review)

 Indefinite Loops

 Indefinite versus definite loops

 while statement

 break statement

Practice, practice, practice!

• For Exam 1

Checkout today’s project:
11-WhileLoops

Not on Exam 1

Exam 1 –

What to bring

 When? Where? See schedule page

 Format: Paper-and-Pencil and On-the-Computer. 50 points each.

 What to bring:

 For the Paper-and-Pencil part:

 Your own textbook (Zelle)

 Your own cheat sheet – One 8.5 by 11 page (both sides),with whatever

you want on it. Prepare this carefully!

 For the On-the-Computer part :

 Any printed or handwritten material you choose (notes, books, printouts, …)

 Your computer, with power adapter and network cable

 Computer: You may access anything on it, for this part.

 Network: You may access ONLY your own SVN repository and any material

directly reachable from the CSSE 120 Angel and web sites for this term
Q1-2

How to prepare?
• See next slide

Note!

• Exam is Tuesday evening

• No regular class Tuesday afternoon

Exam 1 –

How to prepare

 Topics And Sample Problems document

 Linked from Schedule Page for today

 Very long, because it is very thorough. Use it like this:

 Skim pages 2-3 (for Paper-and-Pencil part) and 4-5 (for On-the-Computer part). For

each, circle the items that you are unsure about.

 Talk to someone – your instructor, Review Session people, classmates, trusted friends –

about your circled items. Make notes as needed.

 As time permits, choose some Practice Problems to try – ones that you don’t know how

to do (skip the ones that you do know how to do) and that you think might help your

learning and your score on the test. Strive for big ideas first.

 As time permits, either solidify your understanding of the big-ticket ideas, or go back

to pages 6-7 for lesser items on the On-the-Computer part and repeat step 3 on those.

Try more Practice Problems, either big-ticket ideas of the lesser ideas, depending on

where you are in your mastery of this course.

 Review session: Monday 8 p.m. to 10 p.m., CSSE lab (Moench F-217)

 Homework problems: Recall Amnesty through Wednesday!

• Exam is Tuesday evening

• No regular class Tuesday afternoon

Q3-4

Exam 1 – Big Idea #1:

The input-compute-output pattern

 The input-compute-output pattern

def chaos():

'''

Computes and prints a chaotic sequence of numbers,

as a function of a number input from the user.

'''

print("This function illustrates a chaotic function.")

x = float(input("Enter a number between 0 and 1: "))

for k in range(10):

x = 3.9 * x * (1 - x)

print(x)

print("Chaotic number after 10 iterations is", x)

Exam 1 – Big Idea #2:

Functions: Defining & Calling

def factorial(n):

'''

Returns n!. That is, returns n * (n-1) * (n-2) * ... * 1.

Returns 0 if n < 1. Assumes n is an integer.

'''

product = 1

for k in range(1, n + 1):

product = product * k

return product

def main():

''' Prints a table of factorial values. '''

for k in range(21):

kFactorial = factorial(k)

print("{}! is {}".format(k, kFactorial))

Exam 1 – Big Idea #3a: Definite loops,

the Accumulation Loop pattern

def countedLoop(iterationsToRun):

'''

Returns a partial sum of:

cosine(0) + cosine(1) + cosine(2) + ...

Stops after summing the given number of terms

'''

sum = 0

for k in range(iterationsToRun):

sum = sum + math.cos(k)

return sum

Exam 1 – Big Idea #3b: Definite loops,

looping through a sequence TWO WAYS

def loopThroughSequenceDirectly(sequence):

''' Prints the items in the sequence, each on own line. '''

for item in sequence:

print(item)

def loopThroughSequenceUsingIndices(sequence):

''' Prints the items in the sequence, each on own line. '''

for k in range(len(sequence)):

print(sequence[k])

Exam 1 – Big Idea #4: Objects

 Objects

 Constructing

 Applying methods

 Referencing

instance variables

 How to determine

what methods apply

 Difference between

an object and the

class that the object

is an instance of

def moveCircle(circle, window):

circle.setFill('PaleVioletRed3')

circle.draw(window)

for k in range(100):

sleep(.05)

circle.move(2, -3)

def main():

window = GraphWin("Moving circle",

500, 500)

center = Point(50, 450)

radius = 40

circleToMove = Circle(center, radius)

moveCircle(circleToMove, window)

window.getMouse()

window.close()

Exam 1 – Big Idea #5: Debugging

 Syntax errors: Read the error message.

 Often, the error is on the line just BEFORE the indicated line.

 When the program does not run right:

 Look for RED in the Console window. Decipher its very important message.

 The BLUE link in the Console window takes you to the offending line.

 Use the Debugger to track down hard-to-debug errors

 Use breakpoints/stepping to locate the place where things are going wrong

 Use the Variables View (window) to “wake you up” as to what is going wrong

 You cannot debug the program if you don’t know what the program is supposed to do!

 Use a concrete example to understand WHAT the program is to do.

 Use that same example to figure out by hand HOW the program should do it.

 Draw upon patterns/ideas that you have seen, e.g. the Accumulator Loop pattern

and looping through a sequence.

Definite Loops (review)

 Definite loop:

 Knows before the loop starts to execute the number of

iterations of the loop body

 Usually implemented by using a for statement

 Syntax: for loop-variable in sequence:

body

 Examples: 1-DefiniteLoops.py in today’s project

 Counted loop: A loop where the sequence is a range expression

 Loop through a sequence:

 Directly

 Using indices generated by a range statement

 Loop through a file

Is This Loop a Definite Loop?

Open the file for reading

inputFile = open(inputFileName, 'r')

Process each line of file.

Here, that means to construct and draw the

images specified on the lines of the file.

for line in inputFile:

image = Image(imageCenter,

line.rstrip())

image.draw(win)

time.sleep(delay)

image.undraw()

When the user presses the mouse,

she is done.

Close the window and the file

win.getMouse()

win.close()

inputFile.close()

This is NOT a definite loop,
assuming that reading the file is
implemented as one would expect:

Opening the file sets a file pointer to
the beginning of the file. Each
iteration of the loop advances the
file pointer to the next line of the
file. The loop ends when the end of
the file is reached – the number of
iterations is not known (by the
program) when the loop begins.

Indefinite Loops

 Number of iterations is not known when loop starts

 Is typically a conditional loop

 Keeps iterating as long as a certain condition remains

true

 Conditions are Boolean expressions

 Typically implemented using while statement

 Syntax:

while <condition> :

<body>

Examples: 2-IndefiniteLoops.py in today’s project
Q5-6

Tips to Debug Effectively

 Reproduce the error

 Simplify the error. Use divide-and-conquer to locate it.

 Know what your program should do

 Look at the details:

 Read the Red in the console window!

 Follow the Blue link in the console window!

 Use the Debugger to track down exactly where things are

going wrong

 Understand each bug

before you fix it

 Practice debugging!

Use the scientific method:

• hypothesize

• experiment

• fix bug

• repeat experiment
Q7-8

While Loop

 A pre-test loop

 Condition is tested at the top of the loop

 Example use of while loops

Nadia deposits $100 in a savings account each month. Each

month the account earns 0.25% interest on the previous

balance. How many months will it take her to accumulate

$10,000?

 Open 3-moneyDeposit.py in today’s project

Find and fix its bugs.

Q9

Use the Debugger to find out why the loop
does not appear to stop as expected.

Infinite loops on purpose

 With for loops, we could make the program run for

a really long time, but not forever.

 Create a very simple while loop that runs forever.

 One answer:

while True:

pass

Break statement

 Useful if you want to break out of a loop in the

middle of the loop, like this pattern:

while True:

Do some processing

if processingSaysToStop:

break

Do some more processing

Break statement – Useful if you want to break

out of a loop in the middle of the loop

def breakOutOfMiddleOfLoop():

''' Demonstrates a reasonable use of a BREAK statement '''

while True:

number = int(input("Enter a number bigger than 10: "))

if number > 10:

break # User entered valid input, great!

print("You idiot! Your number was",

number,

"which is NOT bigger than 10.")

print("Try again!")

print()

print("OK, now that I have your number that is")

print("bigger than 10, let's boogie!")

print("The base 10 log of your number is",

math.log10(number))

Exercise: While Loops

 Open 5-guessMyNumber.py in today’s project.

 Follow the instructions there and demo your

program to your instructor or an assistant when you

finish.

 Commit your work

 When you are done, please start HW11.

I’m thinking of
a number between

1 and 100…
Higher!

17?

Q10, turn in quiz

