
CSSE 120 – Fundamentals of Software Development Session 9

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

5. Open the Slides for today if you wish

6. Check out today’s project: 09-MoreFunctions

Plus in-class time
working on these
concepts AND
practicing previous
concepts, continued
as homework.

Functions, revisited

• Defining, parameters

• Calling, actual arguments

• Returning values

Functions, new

•Optional parameters

•Returning multiple
values (tuples)

•Mutators

Checkout today’s project: 09-MoreFunctions

Are you in the Pydev perspective? If not:

• Window ~ Open Perspective ~ Other

then Pydev

Messed up views? If so:

• Window ~ Reset Perspective

No SVN repositories view (tab)? If it is not there:

• Window ~ Show View ~ Other

then SVN ~ SVN Repositories

In your SVN repositories view (tab), expand your
repository (the top-level item) if not already expanded.

• If no repository, perhaps you are in the wrong
Workspace. Get help as needed.

Right-click on today’s project, then select Checkout.
Press OK as needed.

The project shows up in the
 Pydev Package Explorer
to the right. Expand and browse the modules under
src as desired.

Troubles getting
today’s project?
 If so:

Outline of Today’s Session

 Questions?

 Functions, review

 Functions, new ideas

 Optional parameters

 Returning multiple

values from a function

 By returning a tuple

 Mutators

 Functions that modify

the characteristics

of their parameters

Practice, practice, practice!

• Functions

• Lists and List methods

• Strings and String methods

• Using objects

 Zellegraphics

• Definite loops

• Pair programming

Checkout today’s project:
09-MoreFunctions

Functions – Outline

 Functions, review

 Why use functions?

 Abstraction

 Compactness

 Flexibility / Power

 Defining a function

 Parameters

 Calling (invoking) a function

 Actual arguments

 What happens – 4 steps

 Functions, new

 Optional parameters

 Returning multiple values

 by returning a tuple

 Mutators

Check out today’s project:

09-MoreFunctions

 Returning values from a

function

 Return statement

 Capturing the returned

value in a variable

Review: Why functions?

 A function allows us to:

 group together several statements,

 give them a name by which they may be invoked, and

 supply various actual arguments that get used in the function body as the

values of the formal parameters.

 As such, functions have three virtues:

 Abstraction

 It is easier to remember and use the name than the code.

 Compactness

 Functions help you avoid duplicate code.

 Flexibility / Power

 The parameters allow variation – the function can do many things,

depending on the actual arguments supplied.

Example on the
next slide

Review: Why functions? 3 virtues:

 Abstraction

 It is easier to

remember and

use the name

than the code.

 Compactness

 They let you

avoid duplicate code.

 Flexibility/ Power

 The parameters allow variation – the function can do many things,

depending on the actual arguments supplied.
Q1

Example:
def complain(owner, complaint):

 print("Customer:")

 print(" Hey,", owner)

 print(" ", complaint)

def nastyPeopleSayThingsLike():

 complain("Bob", "Your store stinks.")

 complain("Alice", "You stink.")

 complain("Letterman", "Your jokes stink.")

 complain("Letterman", "Your jokes stink.")

 complain("Letterman", "Your jokes stink.")

Abstraction

Compactness

Flexibility / Power

Review: Defining vs. Calling (Invoking)

 Defining a function says what the function should do

def hello():

 print("Hello.")

 print("I'd like to complain about this parrot.")

 Calling (invoking) a function makes that happen

 Parentheses tell interpreter to call (aka invoke) the function

hello()

Hello.

I'd like to complain about this parrot.
Q2

Review: Parameters vs. Actual arguments
def squareNext(x):
 '''

 Returns the square of the number one bigger than the given number,

 that is, returns the square of the "next" number.

 '''

 x = x + 1 # Bad form

 return x * x

def main():

 y = 3

 answer = squareNext(y)

 print(y, answer)

 x = 8

 answer = squareNext(x)

 print(x, answer)

 x = 10

 answer = squareNext(x + 19)

 print(x, answer)

Do the exercise in the
 1-actualArguments.py
module in today’s project:

1. Examine the squareNext
and main functions.

2. Predict what will be printed
when main runs.

3. Run the module. Was you
prediction correct?

4. Answer the quiz question.
Ask questions as needed.

Q3

Review: The 4-step process when a

function is called (aka invoked)

1. Calling program pauses at the

point of the call.

2. Formal parameters get assigned

the values supplied by the

actual arguments.

3. Body of the function is executed.

 The function may return a value.

4. Control returns to the point in

calling program just after where

the function was called.

 If the function returned a value, we

capture it in a variable or use it

directly.

from math import pi

def deg_to_rads(deg):

 rad = deg * pi / 180

 return rad

degrees = 45

radians = deg_to_rads(degrees)

print(degrees, radians)

1 4

2: deg = 45

3

Review – Returning a value from a function

def factorial(n):
 ''' Returns n!. That is, returns n * (n-1) * (n-2) * ... * 1.

 Returns 0 if n < 1. Assumes n is an integer.

 '''

 product = 1

 for k in range(1, n + 1):

 product = product * k

 return product

def main():

 ''' Prints a table of factorial values. '''

 for k in range(21):

 kFactorial = factorial(k)

 print("{}! is {}".format(k, kFactorial))

return statement

Leaves the function and sends
back the returned value.

Capture the returned value in a variable.
 Or, use it directly (e.g., in the print statement). Q4

Functions, new ideas – Outline

 Functions, review

 Why use functions?

 Abstraction

 Compactness

 Flexibility / Power

 Defining a function

 Parameters

 Calling (invoking) a function

 Actual arguments

 What happens – 4 steps

 Functions, new

 Optional parameters

 Returning multiple values

 by returning a tuple

 Mutators

 Returning values from a

function

 Return statement

 Capturing the returned

value in a variable

Optional parameters

 A python function may have some parameters that

are optional.

We can declare a parameter to be optional by

supplying a default value.

Also look at calls

to GraphWin

Multiple optional parameters

 If there are more than one, and it’s not clear which

argument you are providing, you can pass

variable=value:

I wanted the 26th. Whoops!

That’s it.

Nice!

Note that all 3 are optional:

Q5

Returning Multiple Values

 A function can return multiple values

 def powers(n):

 return n**2, n**3, n**4

 What is the type of the value returned by this call?

 powers(4)

 Answer: it is a tuple

 In the caller, how do you capture the returned tuple?

 Assign returned values individually, or to a tuple:

 p2, p3, p4 = powers(5)

 listOfPowers = powers(5)

 Q6

Mutators: Passing a mutable parameter

 Functions can change the contents of a mutable parameter. Such

functions are called mutators.

 What does this print?

What actually gets passed to the function?

def addOneToAll(listOfNums):

 for i in range(len(listOfNums)):

 listOfNums[i] +=1

def main():

 myList = [1, 3, 5, 7]

 addOneToAll(myList)

 print(myList)

Q7-9, turn in quiz

Homework

 Some parts are not easy; we suggest that you start

it today so you can get help during assistant lab

hours this afternoon or evening if you get stuck.

 After you finish threeSquares, work on triangles

until the end of class.

 If you also finish triangles, work on the other

parts of the homework.

Pair Programming: Three Squares

1. Run the threeSquares program to be sure it works.
Put both students' names in the initial comment.

2. Add a function, stats, that takes a Rectangle, r, as a
parameter and returns the area of r

3. modify the program so that it displays the area of
each rectangle inside the rectangle

4. Finally, change stats to return the area and
perimeter (see figure at right)

5. Commit your project back to your repository; also
email threeSquares.py to your partner.

Example

Display

Rest of session

 Continue your homework:

 Homework 8 due Wednesday.

 Homework 9 due Thursday.

