
CSSE 120 – Fundamentals of Software Development Session 7 

Sequences, Indexing 
• Negative indices, slicing 

Strings, Format specifiers 

Files 
• Reading, Writing, Open/Close 

Functions 
• Defining 

• Calling (invoking) 

• Parameters 

• Returned values 

As you arrive: 

1. Start up your computer and plug it in 

2. Log into Angel and go to CSSE 120 

3. Do the Attendance Widget – the PIN is on the board 

4. Go to the course Schedule Page 

• From your bookmark, or from the Lessons tab in Angel 

5. Open the Slides for today if you wish 

Plus in-class time working on these 
concepts, continued as homework. 



Outline 

 Sequences, indexing:  negative indices, slicing 

 Strings:  Format specifiers 

 Files: reading/writing, open/close, error-handling 

 Functions: 

 Defining 

 Calling (invoking) 

 Sending information to a function 

 Parameters and Actual arguments 

 Getting information back from a function 

 The return expression and capturing a returned value in a 

variable 

Plus in-class time 
working on these concepts, 
continued as homework. 



Checkout today‟s project 

 Go to SVN Repository view, at bottom of the workbench 

 If it is not there,  

WindowShow ViewOtherSVN  SVN Repositories 

 Browse SVN Repository view for 

 07-FilesAndFunctions project 

 Right-click it, and choose Checkout 

 Accept options as presented 

 Expand the 07-FilesAndFunctions project that appears in 

Package Explorer (on the left-hand-side) 

 Browse the modules.   

 Let us explore the code in the    01-indexing.py    module 



sentence = "It's just another day." 

print(sentence[0]) 

print(sentence[ 

     len(sentence) - 1]) 

print(sentence[3:8]) 

print(sentence[:8]) 

print(sentence[8:]) 

print(sentence[-1]) 

print(sentence[-2]) 

print(sentence[-3:-8]) 

print(sentence[-8:-3]) 

print(sentence[:-3]) 

print(sentence[-3:]) 

print(sentence[:-1]) 

I 

 

. 

s jus 

It's jus 

t another day. 

. 

y 

 

her d 

It's just another d 

ay. 

It's just another day 

Sequences and 

Indexing 

Q1 



String formatting - Example 

 Allows us to format complex output for display 

 Here‟s an example.  Can you guess what this code prints? 

 

 

 

 Answer: 

 

 The slots {:6.2f} and {:0.3f} get replaced by the values   

7.45034 and 18.9238636. 

 Left-to-right.  Number of values >= number of slots (in this e.g.) 

 The format specifier in each slot specifies how to format its value.  

Details on next slide. 

 The   format   method is a built-in string method. 

 

s = "So {:6.2f} inches is {:0.3f} cm".format(7.45034, 

                                            18.9238636) 

print(s) 

So   7.45 inches is 18.924 cm 



String formatting – Example explained 

So   7.45 inches is 18.924 cm 

s = "So {:6.2f} inches is {:0.3f} cm".format(7.45034, 

                                            18.9238636) 

into which these VALUES get placed These are SLOTS … 

The format specifier in the slot says how to format the value: 
     6.2f      means: 6 spaces allocated to this value, 
   Treat is as a floating-point number. 
   2 places to the right of the decimal point. 
 
    0.3f      is similar, but the   0   means   “use as many spaces 
as you need for this number – no more and no less.” 

There are 
LOTS of 
format 
specifiers 
available. 



String formatting – General form 

General form: 

    <template string>.format(<values>) 

 

 

 

 

s = "So {:6.2f} inches is {:0.3f} cm".format(7.45034, 

                                            18.9238636) 

Recall that the angle-
brackets   <   >   are 
just part of the notation 
that we use to describe 
the syntax formally. 

The template string is a string with slots in it, 

where each slot has the form: 

  {:<format specifier>} 

 Curly braces  { } in the template string indicate 

the slots to be filled from the tuple of values. 
 If you need to include a brace character in the literal text, 

it can be escaped by doubling: {{ and }} 

 Put a colon in front of each format specifier. 
 You can omit the colon in certain special circumstances. 

 Next slide:  format specifiers for doing all sorts of 

things. 

values is a tuple 

 Each slot in the template 

string is filled in with the 

corresponding value in the 

values tuple (left to right). 

 There must be exactly as 

many slots as values in the 

values tuple. 

format returns the formatted string 



Type of 

data 

Example 

format 

specifier 

Format specifiers – examples 
Meaning 

Example 

result 

float 
(but an int 

is OK and  

converted 

to a float) 

6.2f 
Fixed point:  2 digits after the decimal point in a field of at 

least 6 characters.  Fill with spaces as needed.  Round (using 

round-to-nearest-even-integer for ties). 

45.935  

" 45.94" 

6.2e Exponent notation:  scientific notation.  6. 4.08e+22 

6.2g General format:  fixed point unless too big, then exponent. 

int 

7 
Decimal:  base 10, use a field of at least 7 characters.  Fill 

with spaces as needed.   Same as 7d (the d is the default). 

45  

"     45" 

,7 Ditto, but use a comma for thousand’s separators. "  4,503" 

7b 
Same as 7d, but in binary.  Likewise:  o for octal,   x for 

hexidecimal,  c for character (int converted to its Unicode). 

203  

11001011 

07 Pad with leading 0’s.  Works for float‟s too. "0000045" 

Any 

type 

>6 Right-align, use a field of at least 6 characters.  Fill with spaces. "   bob" 

<6 Ditto, but left-align.  Default is right for numbers, left for all else. "bob   " 

^6 Ditto, but center. " bob  " 

*^6 Ditto, but fill with *‟s.  Can be any character, any alignment. "*bob**" 

Non-

numeric 
5.2 

Use at most 2 characters from the data item.  Then, use a 

field of at least 7 characters. 

"cute" 

 "cu   " 



String formatting – Indexing e.g. 

 Here‟s an example that uses indexing.  Can you guess what this 

code prints? 

 

 

 

 Answer: 

 

 The slots {2:6.2f} and {3:0.3f} get replaced by the values   

100.0 and 254.0. 

 Index into tuple.  Number of values can be less than, greater than, or 

equal to number of slots (in this e.g.) 

 The format specifier in each slot specifies how to format its value.  

Details on next slide.  NOTE the use of indexing 

s = "So {2:6.2f} inches is {3:0.3f} cm".format(7.45034, 

                                18.9238636, 100.0, 254.0) 

print(s) 

So 100.00 inches is 254.000 cm 

These are indices …                   from this tuple 



Format specifiers – Gory details 

 Syntax:   A format specifier has the form: 

[ [ fill ]align ][ sign ][#][0][ width ][,][.precision][type] 

where 

    fill ::= <a character other than '}'> 

    align ::= "<" | ">" | "=" | "^" 

    sign ::= "+" | "-" | " " 

    width ::= integer 

    precision ::= integer 

    type ::= "b" | "c" | "d" | "e" 

       | "E" | "f" | "F" | "g" 

       | "G" | "n" | "o" | "s" 

       | "x" | "X" | "%" 

Briefly, this means:  

• optional stuff (including ways to left-align, 
right-align or center, as well as to specify a 
character with which to fill (pad)) 

• then width.precision, where width 
specifies that the field will be at least that 
wide, and precision gives the number of 
digits past the decimal point (for 
numbers) or the maximum number of 
characters to use from the data (for non-
numeric data) 

• then type character, usually   f   (for fixed 
point numeric) or blank. 

For all the gory details, see:  http://docs.python.org/py3k/library/string.html#formatstrings 

http://docs.python.org/py3k/library/string.html


File Processing – What is a File? 

 From Wikipedia:  A computer file is 

 a block of arbitrary information, 

 or a resource for storing information, 

 which is available to a computer program 

 and is usually based on some kind of durable storage. 

 A file is durable in the sense that: 

 it remains available for programs to use after the current 

program has finished, and 

 persists even after the computer is turned off (i.e. is non-volatile 

– does not require power to maintain the stored information). 

 Computer files can be considered as the modern counterpart of 

paper documents which traditionally are kept in offices' and 

libraries' files, and this is the source of the term. 

http://en.wikipedia.org/wiki/Computer_file


File Processing – Devices 



File Processing 

 Key steps: 

 Open file 

 For reading or writing 

 Associates file on disk with a file variable in program 

 Raises an IOError if it cannot open the file 

 xxx 

 Manipulate file with operations on the file variable 

 Read or write information 

 Close file 

 Causes final “bookkeeping” to happen 

 The devices on which files are stored are slow (compared to main 

memory), so changes to the file are often kept in a buffer in memory 

until we close the file or otherwise “flush” the buffer. Q2 



File Writing in Python 
14 

Operation Syntax,   then an    Example 

Open the file 

for writing 

<file variable> = open(<file name>, <mode>) 

outFile = open('average.txt', 'w') 

Write to the file 

<file variable>.write(<string>) 

s = ... 

outFile.write(s) 

Close the file 
<file variable>.close() 

outFile.close() 



File Reading in Python 

 Open file: inFile = open('grades.txt', 'r') 

 Read file: 

 <filevar>.read() Returns one BIG string 

 <filevar>.readline() Returns next line, including \n 

 <filevar>.readlines() Returns BIG list of strings,  

 1 per line 

 for <ind> in <filevar> Iterates over lines efficiently 

 Close file: inFile.close() 



A “Big” Difference 

 Consider: 

 inFile = open ('grades.txt', 'r„) 

for line in inFile.readlines(): 

 # process line 

inFile.close() 

 inFile = open ('grades.txt', 'r„) 

for line in inFile: 

 # process line 

inFile.close() 

 Which takes the least memory? 

 
Q3 



Your turn 

 Implement the following functions as described in the 

    03-files.py     module 

     in today‟s    07-FilesAndFunctions project 

 

 writeStuffToFile() 

 

 readAndPrintMyself() 

 



Why functions? 

 A function allows us to group together several 

statements and give them a name by which they 

may be invoked. 

 Abstraction (easier to remember the name than the 

code) 

 Compactness (avoids duplicate code) 

 Flexibility / Power (parameters allow variation) 

 Example: 

def complain(complaint): 

  print("Customer:", complaint) 

Q4 



Review: Parts of a Function Definition 

def hello(): 

    print("Hello") 

    print("I'd like to complain about this parrot") 

 

Defining a function 

called “hello” 

Indenting tells interpreter 

that these lines are part of 

the hello function 

Blank line tells interpreter 

that we‟re done defining 

the hello function 



Review: Defining vs. Invoking 

 Defining a function says what the function should do 

 Calling (invoking) a function makes that happen 

 Parentheses tell interpreter to invoke the function 

 

 

 

hello() 

 

 

Hello 

I'd like to complain about this parrot 

Q5 



Review: Function with a Parameter 

 Definition: 

def complain(complaint): 

    print("Customer: I purchased this parrot not half " 

          + "an hour ago from this very boutique") 

    print("Owner: Oh yes, the Norwegian Blue. " 

          + "What's wrong with it?") 

    print("Customer:", complaint) 

 Invocation:  complain("It's dead!") 

 Prints: 
Customer: I purchased this parrot not 

half an hour ago from this very boutique 

Owner: Oh yes, the Norwegian Blue. What's wrong with it? 

Customer: It’s dead! 

Parameter, information that comes INTO the function. 
Use the parameter in the body of the function. 

Parameter being used in 
the body of the function. 

Actual argument:  the 
parameter is set to this 

value when this invocation 
of the function executes 



When a function is invoked (called), 

Python follows a four-step process: 

1. Calling program pauses at the 

point of the call. 

2. Formal parameters get assigned 

the values supplied by the 

actual arguments. 

3. Body of the function is executed. 

 The function may return a value. 

4. Control returns to the point in 

calling program just after where 

the function was called. 

 If the function returned a value, we 

capture it in a variable or use it 

directly. 

 

from math import pi 

 

def deg_to_rads(deg): 

    rad = deg * pi / 180 

    return rad 

 

degrees = 45 

radians = deg_to_rads(degrees) 

print(degrees, radians) 

1 4 

2: deg = 45 

3 



Functions can (and often should) 

return values 

 We've written functions that just do things 

 hello() 

 complain(complaint) 

 We've used functions that return values 

 abs(-1) 

 fn_root_1 = math.sqrt(b*b – 4*a*c) 

 Define a function that returns a value 

def square(x): 
 return x * x 

Why might it be better to return than print when a function 
performs a calculation?  

  

return statement 

Q6 



If a Function Calls a Function … 

def g(a,b): 

    print(a+b, a-b) 

     

def f(x, y): 

    g(x, y) 

    g(x+1, y-1) 

     

f(10, 6) 

 

 Trace what happens when the last line of this code 

executes 

 Now do the similar one on the quiz 
Q7 



An exercise in code reading 

 With a partner, read and try to understand the 

code that is on the handout. 

 You can probably guess what the output will be.  

But how does it work? 

 Figure that out, discuss it with your partner and 

answer quiz question 10. 

 Optional Challenge Problem for later:  try to write 

"There's a Hole in the Bottom of the Sea" or “The Green 

Grass Grew All Around” in a similar style. 

 When you are done, turn in your quiz and start HW 
Q8-9, turn in quiz 

http://www.songsforteaching.com/folk/theresaholeinthebottomofthesea.htm
http://kids.niehs.nih.gov/lyrics/greengrassgrew.htm
http://kids.niehs.nih.gov/lyrics/greengrassgrew.htm


Functions – Pizza example, main 

 Call   pizza  with actual arguments. 

 Call it several times, with different arguments.  

That‟s the power of parameters! 

26 



Functions – Pizza example, pizza 
27 

Define   pizza   with 
parameters.  The parameters 
are used in the definition.  
Callers can send whatever 
values they want for the 
parameters.  That’s the power 
of parameters! 



Rest of today 

 Work on homework 

28 


