
CSSE 120 – Fundamentals of Software Development

Software Dev.

Exercise

Day of year module

Character Strings
String operations

Lists and strings

String encodings

String formatting

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

• From your bookmark, or from the Lessons tab in Angel

5. Open the Slides for today if you wish

Session

4

Day, Month Day of year

 When calculating the amount of money required to

pay off a loan, banks often need to know what the

"ordinal value" of a particular date is

 For example, March 6 is the 65th day of the year (in a

non-leap year)

 We need a program to calculate the day of the

year when given a particular month and day

Q1

The Software Development Process

Analyze the Problem

Determine Specifications

Create a Design

Implement the Design

Test/Debug the Program

Maintain the Program

Phases of Software Development

 Analyze: figure out exactly what the problem to be

solved is

 Specify: WHAT will program do? NOT HOW.

 Design: SKETCH how your program will do its work,

design the algorithm

 Implement: translate design to computer language

 Test/debug: See if it works as expected.

bug == error, debug == find and fix errors

 Maintain: continue developing in response to needs

of users

Checkout today’s project

 Go to SVN Repository view, at bottom of the workbench

 If it is not there,

WindowShow ViewOtherSVN SVN Repositories

 Browse SVN Repository view for

06-StringsAndLists project

 Right-click it, and choose Checkout

 Accept options as presented

 Expand the 06-StringsAndLists project that appears in

Package Explorer (on the left-hand-side)

 Browse the modules.

 Let us do the exercise in the 1-daysOfYear.py module

[Hidden] Solution

Calculate day of year for a given date in a non leap year

months = ["jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep", "oct", "nov", "dec"]

length = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

m = input("Enter month name (3-letters, lowercase): ")[:-1] or .strip()

d = int(input("Enter the day of the month: "))

Find out where in list of months this month falls

indx = months.index(m)

daysOfYr = 0

for i in range(indx):

daysOfYr = daysOfYr + length[i]

daysOfYr = daysOfYr + d

m = m[0].upper() + m[1:]

print(m, d, "is day", daysOfYr, "of this year.“)

Strings (character strings)

 String literals (constants):

 "One\nTwo\nThree"

 "Can’t Buy Me Love"

 ′I say, "Yes." You say, "No." ′

 "'A double quote looks like this \",' he said."

 """I don't know why you say, "Goodbye,"

I say "Hello." """

Q2-3

Operating on Strings

Operations/Methods What does each of these operation/method do?

s1 + s2
Concatenates two strings

e.g. “xyz” + “abc”

s * <int>
Replicates string s <int> times

e.g. “xyz” * 4

s.capetalize() Copy of s with only 1st letter capitalized

s.lower() Copy of s with all lower case characters

s.reverse() Copy of s will all characters reversed

s.split() Split s into a list of substrings

Some more string methods

Methods What does each of these operation/method do?

s.count(sub) Count the number of occurrences of sub in s

s.find(sub) Find first position where sub occurs in s

s.title()
Copy of s with first character of each word

capitalized

s.replace(old, new)
Replace all occurrences of old in s with

new

s.lstrip() Copy of s with leading white space removed

s.join(list)
Concatenate list into a string, using s as

the separator

Practice with string operations

 Many of the operations listed in the book, while they work

in Python 2.5, have been superseded by newer ones

 + is used for String concatenation: "xyz" + "abc"

 * is used for String duplication: "xyz " * 4
 >>> franklinQuote = 'Who is rich? He who is content. ' +

'Who is content? Nobody.'

 >>> franklinQuote.lower()

'who is rich? he who is content. who is content? nobody.'

 >>> franklinQuote.replace('He', 'She')

'Who is rich? She who is content. Who is content? Nobody.'

>>> franklinQuote.find('rich')

Q4-5

 Lists are mutable:

colors = ["red", "white", "blue"]

colors[1] = "grey"

colors.append(“cyan")

 A string is an immutable sequence of characters

>>> building = "Taj Mahal"

>>> building[2]

>>> building[1:4]

>>> building[4] = “B”

colors becomes
["red", "grey", "blue"] then
["red", "grey", "blue". “cyan"]

O

K

NOT OK.

Gives an error message when executed.

Strings are immutable sequences

Q6-7

Strings and Lists

 A String method: split breaks up a string into separate

words
 >>> franklinQuote = 'Who is rich? He who is content. ' +

'Who is content? Nobody.‟

 >>> myList = franklinQuote.split(„ „)

['Who', 'is', 'rich?', 'He', 'who', 'is', 'content.',

'Who', 'is', 'content?', 'Nobody.’]

 A string method: join creates a string from a list
 '#'.join(myList)

 'Who#is#rich?#He#who#is#content.#Who#is#content?#Nobody.'

 What is the value of myList[0][2]?

 Do exercise in 2-practiceWithStringsAndLists module

Getting a string from the user

take a breakQ9

String Representation

 Computer stores 0s and 1s

 Numbers stored as 0s and 1s

What about text?

 Text also stored as 0s and 1s

 Each character has a code number

 Strings are sequences of characters

 Strings are stored as sequences of code numbers

 Does it matter what code numbers we use?

 Translating: ord(<char>) chr(<int>)

Q10-11

Consistent String Encodings

 Needed to share data between computers, also

between computers and display devices

 Examples:

 ASCII—American Standard Code for Info. Interchange

 ―Ask-ee‖

 Standard US keyboard characters plus ―control codes‖

 8 bits per character

 Extended ASCII encodings (8 bits)

 Add various international characters

 Unicode (16+ bits)

 Tens of thousands of characters

 Nearly every written language known Q12

String Formatting

 Allows us to format complex output for display

 It treats a string as a template with slots --- {}

 Provided values are plugged into each slot

 Uses a built-in method, format(), that takes values to

plug into each slot

 <template-string>.format(<values>)

 What does each slot look like?

 {<index>:<format-specifier>}

 <index> tells which of the parameters is inserted in slot

<format-specifier> describes how this slot will be

formatted

Format Specifiers

 Syntax:

 %<width>.<precision><typeChar>

 Width gives total spaces to use

 0 (or width omitted) means as many as needed

 0n means pad with leading 0s to n total spaces

 -n means ―left justify‖ in the n spaces

 Precision gives digits after decimal point, rounding if needed.

 TypeChar is:

 f for float, s for string, or d for decimal (i.e., int) [can also use i]

 Note: this RETURNS a string that we can print

 Or write to a file using write(string), as you’ll need to do on the

homework 6 assignment (HW6)

submit quizQ10-11

Begin HW6

 Although you do not have a reading assignment

and Angel quiz, you are strongly encouraged to

begin working on your homework early.

