
CSSE 120 – Fundamentals of Software Development

Types Sequences

• Especially lists

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

• From your bookmark, or from the Lessons tab in Angel

5. Open the Slides for today if you wish

Session 5

Outline – Help, Types, and Sequences

 Built-in help

 Types

 What is a type?

 Examples of types in Python

 Variables and types

 The type function

 Numeric types

 int, float – differences

 Convert one type to another

 Sequences

What is a Sequence?

Why important?

 Kinds of Sequences,

how they differ

 Especially list

Operations that any

Sequence can do

 Special operations for

Lists

Plus in-class time working on the above concepts, continued as homework.

Built-in Help

 dir()

 dir(<identifier>)

 help(<identifier>)

 To see which functions are built-in:

 dir(__builtins__)

 help(__builtins__)

 help(abs)

 Help on imported functions

 import math

 help(math)

 help(math.atan2)

3

Q1

Data types

 Data

 Information stored and manipulated on a computer

 Ultimately stored as bits – 0s and 1s

 But the type of each data item determines:

 How to interpret the bits

 Data type

 A particular way of interpreting bits

 Determines the possible values an item can have

 Determines the operations supported on items

 Python types include: int, float, str, list, function, tuple

4

Finding the type of a data item

 Built-in function type(<expr>) returns the data

type of any value

 Find the types of:

 3 3.0 -32 4//5

64.0/5 “Shrubbery” [2, 3] (2, 3)

 Why do we need different numerical types?

Operations on int are more efficient and precise

 Counting requires int

 floats provide approximate values, used when we

need real numbers

5

Q2-3

Numeric Types - Summary

 int : integer type

 Exact values

Most operations on two ints

will yield an int

 float : real number type

 Approximate values

 An operation on float and int

always yields a float

>>> 5//3

1

>>> 5.0/3

1.6666666666666667

>>> 5/2

2.5

>>> 5/2.0

2.5

>>> 5%3

2

>>> 5%2

1

>>> 5.0//2.0

2.0

6

Q4

Practice with types

 Go to SVN Repository view, at bottom of the workbench

 If it is not there,

WindowShow ViewOtherSVN SVN Repositories

 Browse SVN Repository view for

05-TypesAndLists project

 Right-click it, and choose Checkout

 Accept options as presented

 Expand the 05-TypesAndLists project that appears in

Package Explorer (on the left-hand-side)

 Browse the modules.

 Do the exercise in the 1-practiceTypes.py module

Sequences – outline

1. What is a Sequence (in Python)? Examples.

2. Why are Sequences powerful? Indexing.

3. What kinds of Sequences are there?

 List bytearray str (a string) tuple range bytes

4. How do they differ?

 Mutability, what they can contain, notations, operations

5. Operations that (almost) every Sequence can do:

 The len function, accessing with a subscript, +, *, slicing, …

 Two types of operations: functions and methods

 Variables reference their value. Cloning.

6. Extra operations that Lists can do

 Next time: extra operations that Strings can do

1. Sequence – what is it (in Python)?

 A sequence is a type of thing in Python that represents

an entire collection of things.

 More carefully, it represents a

• finite • ordered • collection of things

• indexed by whole numbers.

 Examples:

A list ["red", "white", "blue"]

A tuple (800, 400)

A str (string) "Check out Joan Osborne, super musician"

There are also types
for UNordered
collections of things
– sets and Circles,
for example. More
on these in a

subsequent session.

Q5

2. Why are Sequences powerful?

 A sequence lets you refer to an entire collection using a

single name.

 You can still get to the items in the collection, by indexing:

colors = ["red", "white", "blue"]

colors[0] has value "red"

colors[1] has value "white"

colors[2] has value "blue"

 And you can loop through the items in the collection, like this:

for color in colors:

circle = ...

circle.setFill(color)

Indexing
starts at ZERO,
not at one.

3. Types of Sequences

 There are currently 6 built-in types

of Sequences, in two flavors:

Mutable: the collection can change
after it is created:
• its items can change
• items can be deleted and added

Immutable: once the collection is
created, it can no longer change.

The following slides explain that different
types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make them
• operations that you can do to them

These are just the built-in Sequence types, that is,
the ones that you can use without an import

statement. The array and collections
modules offer additional mutable Sequence types.

Mutable:
• list

• bytearray

Immutable:
• str (a string)

• tuple

• range

• bytes
Q6

 Lists are mutable:

colors = ["red", "white", "blue"]

colors[1] = "grey"

colors.append("bob")

 Strings and tuples are NOT mutable:

building = "Taj Mahal"

building[2] = "g"

pair = (48, 32)

pair[0] = 22

 The following have nothing to do with mutability and are perfectly OK:

building = "Sistene Chapel" pair = (0, 0) colors = []

building = building.replace("Mahal", "Begum")

colors becomes
["red", "grey", "blue"] then
["red", "grey", "blue". "bob"]

O

K

NOT OK.

Gives an error message when executed.

4a. Mutability
This and the following slides explain that
different types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make instances
• operations that you can do to them

4b. Things that

Sequences can contain

This and the following slides explain that
different types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make instances
• operations that you can do to them

Type
What objects of this type

can contain

list anything

bytearray
bytes, that is,

integers between 0 and 255

str (a string)
Unicode characters (each 16 or 32

bits, depending on an installation option)

tuple anything

range ranges generated by range

bytes Bytes (integers

between 0 and 255)

A bit is a 0 or 1.

Each byte is 8 bits
and represents an
ASCII encoding of
one of the 128 pre-
Unicode characters.

Unicode allows for
far more than the
128 ASCII characters
and is the modern
standard. See pp.
132-133 or your text.

If you ever need a list-like thing that holds only

(say) int’s, check out the array module. Q7

4c. Notation and how

you can make instances

This and the following slides explain that
different types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make instances
• operations that you can do to them

Type
Notation, and how you make an instance

(options, but not ALL of the options, are shown here)

list
[blah, blah, ...] list(sequence)

[expression for variable in sequence]

str
(a string)

"the charac'ters" 'the charac"ters'

'''characte\\rs in a \a string with \xF9

stuff th\o274at br\'eaks across lines.'''

tuple
(blah, blah, ...) blah, blah, ...

But special cases for 0 or 1 elements: () (blah,)

range range(m) range(m, n) range(m, n, i)

4c. Notation and how

you can make instances (continued)

This and the following slides explain that
different types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make instances
• operations that you can do to them

Type
Notation, and how you make an instance

(options, but not ALL of the options, are shown here)

bytes

Same as for strings, but put a b in front, e.g.

b"the charac'ters"

b'the charac"ters'
bytes(list of ASCII codes)

For example, b'rat' is the same as

bytes([114, 97, 116])

bytearray
bytearray(bytes object)

bytes(list of ASCII codes)

 You can do the following with any Sequence

 Get its length

 Get the kth element in the Sequence, for any particular k

 Or get the mth element through the nth element, for any particular m and n

 Concatenate and Repition

 Check for membership

 that is, whether or not a given item is in the Sequence

 Compare two Sequences

 to see which is “smaller” or whether they are “equal”

 And also get the smallest and largest elements in the Sequence

4d. Operations that

you can do to Sequences

This and the following slides explain that
different types of Sequences differ in their:
• mutability
• type of things they can contain
• notations / how you make instances
• operations that you can do to them

This next slides discuss
each of these in detail.

Well, almost any Sequence. Range objects can’t do some of these.
But any list or str or tuple or … can do them all.

Let x be a Sequence (so a list or str or whatever),

throughout these examples

 Get its length

len(x)

 Get the kth element in the Sequence,

for any particular k x[k] x[0] ...

 Or get the mth element through the nth element (but not including the

nth one), for any particular m and n

x[m:n]

Continued on the next slide

4d. Operations that you can do

to any Sequence: len and splicing

This is called indexing. The first index
is ZERO, not one. Hence the last index
is len(x) – 1, not len(x).

 list[m:n] returns a new list consisting of
[list[m], list[m+1], list[m+2], … list[n-1]]

 list[:n] returns a new list consisting of
[list[0], list[1], … list[n-1]]

 list[m:] returns a new list consisting of all elements

of list beginning with list[m].

 list[m:n:k], similar to range(m, n, k),

returns a new list consisting of every kth element of

list, starting with list[m].

18

4d. Operations that you can do

to any Sequence: splicing

Q8

Let x and y be two Sequences (so a list or str or

whatever), throughout these examples

 Apply + and *, called concatenation and repetition.

 Put examples here.

 Explain that * makes a shallow copy, as

does assignment.

4d. Operations that you can do to any

Sequence: concatenation and Repetition

Let x and y be two Sequences (so a list or str or

whatever), throughout these examples

 Membership

 Compare for <, >, equality

 min and max

 Explain that we will return to this when

we do IF statements

4d. Operations that you can do to any

Sequence: comparisons

List-specific Operations

 <list>.append (<expr>)

Modifies the list by adding the value of the expression

to the end of the list

 <list>.reverse()

Modifies the list by reversing the order of its elements

 <list>.sort()

Modifies the list by sorting the elements into increasing

order

 Why don’t these operations work with tuples?

 Do the exercises in the 2-practiceLists.py module.

21

Not all expressions return values

 >>> numList = [2, 5, 7, 2, 8, 4, 2, 6]

 >>> c = numList.count(2)

>>> c

3

 >>> r = numList.reverse()

>>> numList

[6, 2, 4, 8, 2, 7, 5, 2]

 >>> r

 >>> [r]

[None]

22

Q9

A List of Points

from zellegraphics import *

win = GraphWin()

pointList = [Point(30, 120), Point(150,55), Point(80, 175)]

poly = Polygon(pointList)

poly.setFill('maroon')

poly.draw(win)

for point in pointList:

circ = Circle(point, 20)

circ.draw(win)

23

Homework 5

 See instructions linked from Course Schedule

 Upload solutions to dropboxes on ANGEL

 Once you "get the hang" of problems 3 and 4, you
should probably start on Pizza and Polygon while
we're here to help

24

Q10, turn in quiz

