## As you arrive:

1. Start up your computer and plug it in
2. Log into Angel and go to CSSE 120
3. Do the Attendance Widget - the PIN is on the board
4. Go to the course Schedule Page

- From your bookmark, or from the Lessons tab in Angel

5. Open the Slides for today if you wish

## Pair Programming

## Review and Pracłice

Lots of time to work on Homeworks 3 and 4

## Outline

## $\square$ Review

$\square$ Starting a program in main. How to define a function, call a function.
$\square$ Organizing a program into functions
$\square$ The input-compute-output pattern
$\square$ Functions with parameters that return values

- Parameters and variables defined in functions are local to that function
- Capture the returned value in a variable, or use it directly
$\square$ Definite loops, using a range statement
- The Accumulator Loop pattern
$\square$ Pair Programming
$\square$ Most of today is Practice, Practice, Practice on:
$\square$ Homework 3
$\square$ factorial
$\square$ barChart
$\square$ Conversion
$\square$ Homework 4
$\square$ bullsEye
$\square$ countIntegers


## Check out project for today

$\square$ Go to SVN Repository view, at bottom of the workbench
$\square$ If it is not there,
Window $\rightarrow$ Show View $\rightarrow$ Other $\rightarrow$ SVN $\rightarrow$ SVN Repositories
$\square$ Browse SVN Repository view for

## 04-ReviewAndPractice project

$\square$ Right-click it, and choose Checkout
$\square$ Accept options as presented
$\square$ Expand the 04-ReviewAndPractice project that appears in Package Explorer (on the left-hand-side)
$\square$ Browse the modules.
$\square$ We will start with I-mainStructure.py (next slide)

## Review - in Eclipse

## 04-ReviewAndPractice

$\square$ 1-mainStructure:

- Starting a program in main.
- How to define a function, call a function.
$\square$ 2-inputComputeOutput:
- How to organize a program into functions.
- How to input and convert the input to a float ('int' would convert to an int).
- How to print (i.e., produce output).
- How to use a FOR loop.
- This FOR loop is a definite loop using RANGE.
- It can be thought of as an example of the Accumulator Loop pattern.
- How to use local variables
- for the constant (3.9) and howManyToPrint (10), along with the input variable ( $x$ ) and the loop variable ( $k$ ).


## More review - in Eclipse

## 04-ReviewAndPractice

$\square$ 3-functionsWithParameters:
$\square$ Functions with parameters that return values

- How to define a function with parameters
- How to call that function, supplying actual arguments whose values the parameters are assigned to
- Parameters and variables defined in functions are local to that function
- Capture the returned value in a variable, or use it directly
$\square$ It is all a question of SPECIFICATION - communicating with the user of your code.
$\square$ Appending to a list
$\square$ 4-accumulatorLoopPattern:
$\square$ What the Accumulator Loop pattern is, example


## Pair Programming

$\square$ Working in pairs on a single computer
$\square$ One person, the driver, uses the keyboard
$\square$ The other person, the navigator, watches, thinks, and takes notes
$\square$ For hard (or new) problems, this technique
$\square$ Reduces number of errors
$\square$ Saves time in the long run
$\square$ Works best when partners have similar skill level
$\square$ If not, then student with most experience should navigate, while the other student drives.

## Food tasting

$\square$ Suppose you are at food tasting show and are tasting 5 different dishes
$\square$ Sampling the dishes in different orders may affect how good they taste
$\square$ If you want to try out every possible ordering, how many different orders would there be?

That number is the factorial of 5

$$
n!=n(n-1)(n-2) \ldots(1)
$$

$\square$ What type of problem is this?

## Accumulating results: factorial

$\square$ Work with a partner (pick a driver and navigator)
$\square$ Follow the advice in

## www.rose-

hulman.edu/class/csse/csse120/201110/Resources/pair
Programming.html
for how to work together, whose machine you should use, how to turn in your collaborative work, and how you will both end up with a graded version of that work.
$\square$ Do the TODO's in factorial.py in 03-assignmentsAndLoops

- Those TODO's will direct you to write and test a function that computes $n!$, for any given $n$.


## Graphics Exercise with loops

$\square$ Trade roles with partner-new driver, new navigator
$\square$ Do the TODO's in barChart.py in 03-assignmentsAndLoops
$\square$ They will direct you to draw a figure like this where the lengths of the lines increase by a constant amount
$\square$ The graphicsExample module that we supplied and your previous graphics program may be useful.

- You may want to use variables to hold current x -coordinate and current line length, and change the values of those
 variables each time through the loop



## Rest of today

$\square$ Do your pair programming from Homework 3
$\square$ factorial
$\square$ barChart
$\square$ Do your individual work from Homework 3
$\square$ conversion
$\square$ And Homework 4
$\square$ bullsEye
$\square$ sumAndCount
$\square$ Don't forget the reading quizzes in both homework
$\square$ Both homework are due Monday

