
CSSE 120 – Fundamentals of Software Development

Writing simple programs
• The input-compute-output pattern

• Eclipse – An Integrated 

Development Environment (IDE)

• Subversion (SVN) for version 

control

Functions
• Writing functions

• Calling functions

• Functions with

parameters

• The main function

As you arrive:

1. Start up your computer and plug it in

2. Log into Angel and go to CSSE 120

3. Do the Attendance Widget – the PIN is on the board

4. Go to the course Schedule Page

• From your bookmark, or from the Lessons tab in Angel

5. Open the Slides for today if you wish

Session 2



Announcements

 Homework assignments: 

 Reading and the Reading Quiz part of each homework 

assignment is due at the start of the next class

Other parts (typically, programming) always get at least 

48 hours, so homework assigned Monday is special.

2

Day assigned
Reading quizzes 

due (next class)

Other parts of assignments due

(at least 48 hours)

Monday Tuesday
Wednesday, at the same time of 

day that your class meetings begin

Tuesday Thursday Thursday

Thursday Monday Monday
Q1



Show Off Some Cool Graphics

 Who would like me to show off their work?

 Otherwise I’ll pick some programs at random

 What other kinds of programs would you like to 

write?

3

Q2



Outline

 Answer questions & review concepts from Session 1

 Tools for software development:

 Integrated Development Environment (IDE) – Eclipse

 Version control – Subversion (SVN)

 Writing simple programs

 Functions

 The main function

 The input-compute-output pattern

 Examples:  chaos, temperature, kph

4



Integrated Development Environments (IDEs)

 What are they?

 Why use one?

 Our IDE  Eclipse

Why we chose it

 Basic concepts in Eclipse

Workspace, Workbench

 Files, folders, projects

 Views, editors, perspectives 

The next slides 

address the listed 

points



IDEs  What are they?

Type and change 

code (editors)

An IDE is an application that makes 

it easier to develop software.

They try to make it easy to:

See output

See the outline of 

a chunk of code

See the outline of 

the entire project

Compile, run, 

debug, document



IDEs  Why use one?

Type and change 

code (editors)

An IDE is an application that makes 

it easier to develop software.

They try to make it easy to:

See output

See the outline of 

a chunk of code

See the outline of 

the entire project

Compile, run, 

debug, document

Eclipse is:

• Powerful -- everything here and more

• Easy to use

• Free and open-source

• An IDE for any language, not just Python

• What our upper-class students told us to use!



Basic concepts in Eclipse

 Workspace  where your projects are stored on your 
computer

 Project  a collection of files, organized in folders,  
that includes:
 Source code (the code that you write)

 Compiled code (what your source code is translated into, for 
the machine to run)

 Design documents

 Documentation

 Tests
 And more that you will learn about over time

 Workbench  what we saw on the previous slide, that 
is, the tool in which you do your software development 



Special things to do ONCE – for your 

first Eclipse session only

 I will demo the most common case – just follow my 

demo if your setup is ―the usual‖.

 If your setup is different, see

 http://www.rose-

hulman.edu/class/csse/resources/Eclipse/installation.htm

 Here is a summary of what I will lead you through:

Open Eclipse

 Set your workspace [careful, pick the one we set up for you]

 Switch to the Pydev perspective

9

http://www.rose-hulman.edu/class/csse/resources/Eclipse/installation.htm
http://www.rose-hulman.edu/class/csse/resources/Eclipse/installation.htm
http://www.rose-hulman.edu/class/csse/resources/Eclipse/installation.htm


Your first Eclipse program

 Your instructor will lead you through your creation of 

your first Python project in Eclipse.  Here is a brief 

summary:

1. File  New  Pydev Project

2. File  New  Pydev Module

3. Type print("hello world")

4. Run the program

5. Type a few more print statements, including one that 

is wrong.

 See where the error message appears and how clicking on 

it brings you to the offending line.

10



Views, editors, perspectives 

This view is controlled by an 

editor that lets you make 

changes to the file

Tabbed views (Problems, Console)

A view that lets 

you navigate 

the entire 

project 

(Package 

Explorer)

A view that shows 

the outline of the 

module being 

examined (Outline 

View)

Tabbed views of the source code of this project

A perspective displays a set of views and editors 

that are appropriate for the task at hand.  

Perspectives include:  PyDev, Java and lots more

This is the 

PyDev 

perspective

but just a 

button click 

brings us to 

another



Eclipse in a Nutshell

 Workspace  where your projects are stored on your 

computer

 Project  a collection of files, organized in folders,  

that includes:

 Source code and Compiled code and more

 Workbench  the tool in which to work

 It has perspectives which organize the views and editors

that you use

 View  a "window within the window"

 displays code, output, project contents, debugging info, 

etc.



Software Engineering Tools

 The computer is a powerful tool

 We can use it to make software development easier 

and less error prone!

 Some software engineering tools:

 IDEs, like Eclipse and IDLE

 Version Control Systems, like Subversion

 Testing frameworks, like JUnit

 Diagramming applications, like UMLet, Violet and Visio

Modeling languages, like Alloy, Z, and JML

 Task management trackers like TRAC



Version Control Systems

 Store ―snapshots‖ of all the changes to a project over time

 Benefits:

 Multiple users

 Multiple users can share work on a project

 Record who made what changes to a project

 Provide help in resolving conflicts between what the multiple users do

 Maintain multiple different versions of a project simultaneously

 Logging and Backups

 Act as a ―global undo‖ to whatever version you want to go back to

 Maintain a log of the changes made

 Can simplify debugging

 Drop boxes are history!

 Turn in programming projects

 Get it back with comments from the grader embedded in the code



Our Version Control System

 Subversion, sometimes called SVN

 A free, open-source application

 Lots of tool support available

Works on all major computing platforms

 TortoiseSVN for version control in Windows Explorer

 Subclipse for version control inside Eclipse



Version Control Terms

Subversion Server

Alice's 

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Repository: the 

copy of your 

data on the 

server, includes 

all past versions
Working copy: 

the current

version of your 

data on your 

computer

Working 

Copy

Working 

Copy

Working 

Copy

Working 

Copy …

Q3



Version Control Steps—Check Out

Subversion Server

Alice's 

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

…
Working 

Copy

Working 

Copy

Working 

Copy

Working 

Copy

Check out: 

grab a new 

working copy 

from the 

repository

Q4a



Version Control Steps—Edit 

Subversion Server

Alice's 

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working 

Copy

Working 

Copy

Working 

Copy

Working 

Copy …

Edit: make 

independent

changes to a 

working copy



Version Control Steps—Commit

Subversion Server

Alice's 

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working 

Copy

Working 

Copy

Working 

Copy

Working 

Copy …

Commit: send 

a snapshot of 

changes to 

the repository

Q4b



Version Control Steps—Update

Subversion Server

Alice's 

Computer

Bob's

Computer

Instructor's

Computer

Alice's

Repository

Bob's

Repository …

Working 

Copy

Working 

Copy

Working 

Copy

Working 

Copy …

Update: make 

working copy 

reflect 

changes from 

repository

Q4c



The Version Control Cycle

Check 

Out

EditUpdate

Commit Update

Update and 

Commit often!



Check out today’s exercise

 Go to the SVN Repository view at the bottom of the 

workbench

 If it is not there, 

WindowShow ViewOtherSVN RepositoriesOK

 Browse SVN Repository view for

02-InputComputeOutput project

 Right-click it, and choose Checkout

 Accept options as presented

 Expand the 02-InputComputeOutput that appears in 

Package Explorer (on the left-hand-side)

 Browse the modules.  We will start with hello.py (next slide)

If you're stuck, get help and see http://www.rose-

hulman.edu/class/csse/resources/Subclipse/installation.htm

http://www.rose-hulman.edu/class/csse/resources/Subclipse/installation.htm
http://www.rose-hulman.edu/class/csse/resources/Subclipse/installation.htm
http://www.rose-hulman.edu/class/csse/resources/Subclipse/installation.htm


Functions

 Examine your hello.py module in your Eclipse 

project.

 Functions

 Named sequences of statements

 Can invoke them—make them run

 Can take parameters—changeable parts

23



Parts of a Function Definition
24

>>> def hello():

print("Hello“)

print("I'd like to complain about this parrot“)

Defining a function 

called ―hello‖

Indenting tells interpreter 

that these lines are part of 

the hello function

Blank line tells interpreter 

that we’re done defining 

the hello function



Defining vs. Invoking

 Defining a function says what the function should do

 Invoking (calling) a function makes that happen

 Parentheses tell the interpreter to invoke the function

 Later we’ll define functions with parameters

25

>>> hello()

Hello

I'd like to complain about this parrot

Q5



Identifiers: Names in Programs

 Uses of identifiers so far…

Modules

 Functions

 Variables

 Rules for identifiers in Python

 Start with a letter or _ (the ―underscore character‖)

 Followed by any sequence of letters, numbers, or _

 Case matters!        spam ≠ Spam ≠ sPam ≠ SPAM

 Choose descriptive names!

26

Q6a



Reserved Words

 Built-in names

 Can’t use as regular identifiers

 Python reserved words:

27

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass with

def finally in print yield

Q6b



Be careful not to redefine function 

names accidentally

 Examples:

 len – used to find the number of items in a sequence

 max

min

 float – used to convert a number to a floating point 

number

28



Expressions

 Fragments of code that produce or calculate new 

data values

 Examples

 Literals: indicate a specific value

 Identifiers: evaluate to their assigned value

 Compound expressions using operators: +, -, *, /, **

 Can use parentheses to group

29

Q7-8



Programming Languages

 Have precise rules for:

 Syntax (form)

 Semantics (meaning)

 Computer scientists use meta-languages to describe 

these rules

 Example…

30



Output Statements

 Syntax:

 print()

 print(<expr>)

 print(<expr>, <expr>, …, <expr>)

 print(<expr>, <expr>, …, end=‘ ‘)

 Semantics?

 Is this allowed?

 print("The answer is:", 7 * 3 * 2)

31

A ―slot‖ to be filled with any expression

Repeat indefinitely

Note: end = <str>

Q9



Basic program structure

The input-compute-output pattern

 Examine the chaos.py module in your Eclipse project.

 Do the TODO’s in it.

 I’ll demo some of them with you.

32



A simple program that defines and 

invokes a function called main()
33

# A simple program illustrating chaotic behavior.

# From Zelle, 1.6

def main():

print "This program shows a chaotic function"

x = float(input("Enter a number: "))

for i in range(10):

x = 3.9 * x * (1 - x)

print(x)

main()

comments

Define a function called ―main‖

A variable called x

An input assignment

A loop

The loop’s body

Assignment statement

Invoke function main

Q10-14



The Software Development Process
34

Analyze the Problem

Determine Specifications

Create a Design

Implement the Design

Test/Debug the Program

Maintain the Program

Q15



More practice at the

input-compute-output pattern

 Examine the temperature.py module in your Eclipse 

project.

 Do the TODO’s in it.

 I’ll demo some of them with you.

35



Road Trip!
36



The Software Development Process
37

Analyze the Problem

Determine Specifications

Create a Design

Implement the Design

Test/Debug the Program

Maintain the Program

Q16



Homework

 Hand in in-class Quiz

 Begin Homework

 Find it from the Schedule page

 Reading and ANGEL quiz due Tuesday.

 Rest (programming part) due Wednesday at the time 

of your regular class session.

39


