
Page 1 of 25

CSSE 120 – Introduction to Software Development

Exam 1 – Format, Topics and Sample Problems
Fall term, 2010-2011

Format: The exam will have two sections:

 Part 1: Paper-and-Pencil.

o External resources allowed: Your own textbook and a one-page (back and front)
“cheat sheet” with whatever you want on it.

 You should create your own cheat sheet (working with someone else is fine) as that will
maximize both your learning and your score on the exam.

 If you don’t have a textbook or forget yours, you may briefly borrow the textbook that
we bring to the exam (sharing it with anyone else who needs it).

o Points: Approximately 50 of 100.

 Part 2: On-the-computer.

o External resources allowed: Any printed or handwritten materials you choose
to bring, your own computer, your own SVN repository, and any material directly
reachable from the CSSE 120 Angel and web sites for this term.

 For example, you may bring your own or other textbooks, notes, summary or study
guides, and printouts from anywhere on the Internet.

 During the exam, you may access anything on your computer.

 During the exam, you may use the Internet ONLY to access your own SVN repository and
anything directly reachable from this term’s Angel course or from this term’s web sites:
www.rose-hulman.edu/class/csse/csse120/201110 and
www.rose-hulman.edu/class/csse/csse120/201110robotics.

o Points: Approximately 50 of 100.

During the exam, you may NOT communicate in any way with anyone other than your
instructors or their assistants. Please turn off email, chat, etc. during the exam.

Topics:

 The ideas presented in Sessions 1 through 10 (and not those introduced in Session 11).

 Chapters 1 through 7 of your textbook.
o Also, sections 8.1 and 8.4 may be helpful: the former reviews for loops and the

latter discusses Boolean operators (and, or, not) and truth tables.

What you should be able to do: In the following, we have tried to list everything

that you might be expected to demonstrate on the exam, plus sample problems for as much
of that as practical. But please note:

 This is not a contract; it is only our best-effort to list everything you might be expected
to demonstrate on this exam.

 The sample problems that will follow are just that – samples. The problems on the
exam may look both similar to and somewhat different from the samples.

http://www.rose-hulman.edu/class/csse/csse120/201110
http://www.rose-hulman.edu/class/csse/csse120/201110robotics

Page 2 of 25

For the Paper-and-Pencil portion of Exam 1,

students should be able to:

1. Read short snippets of code:

a. Trace short snippets of code (less than, say, 10 lines or so) and show what gets printed
or the values of indicated expressions.

b. Indicate errors in short snippets of code:

 Syntax errors: something obviously wrong or missing

 Semantic errors: does such-and-such, should do so-and-so

2. Write short snippets of code, especially:

a. range expressions for common ranges

b. loops that generate/print simple sequences

c. function definitions, including those that take parameters and/or return values

d. function calls, including follow-up code that uses a returned value

3. Explain important concepts of software development, chosen from:

a. The difference between a specification and an implementation, and what a specification of a
function should include

b. Documentation: how and why we put internal comments and documentation strings (doc-
comments) in our programs

c. Software development tools: what is provided by a typical, modern:

 Integrated Development Environment (IDE)

 Version control system

 Debugger

d. Software development processes:

 What are some important phases of software development?

 What is procedural decomposition, and why are functions useful?

 What is a compiler? An interpreter?

 What is an algorithm?

e. Key ideas of object-oriented programming, including:

 What makes objects different from traditional data types, namely: objects know stuff
(stored in instance variables) and can do stuff (via methods)

 Why object-oriented programming is valuable

 The difference between a function and a method, and the different notations for
invoking them

 The difference between an object and a class to which that objects belongs

 The difference between accessor and mutator methods

f. What is the difference between the int and float data types? What are the limitations

of each? When should use one and when the other?

g. The implications of the fact that variables in Python are names that point to values in memory,
that is, variables are references to their values

The next page has
a list of concepts that
you might see in these
snippets of code that
you read and write.

Expect several questions of this form.

While you might see some
problems of type #3,
don’t expect a lot of such
questions and don’t expect
them to be deep.

A simple understanding of
these concepts is adequate.

Sample problems of each of these items
appear later in this document. If you don’t
understand what an item here is asking, see if
the example problem clarifies matters for you.

Page 3 of 25

Concepts that you might see on code that you read and write include:

1. Variables and assignment, including
simultaneous assignment (x, y = …, …)
and operator assignment (sum += …)

2. Data types: int, float, sequences
(lists, strings, tuples, range expressions)

3. Arithmetic and character expressions, including
those involving:

 Operators: + - * / // % **

 Math functions:
abs cos sin pi sqrt

 Character functions: ord chr

4. The input function, including:

 Providing a prompt

 Converting an input string into a number
(integer or floating-point)
using int and float

 Stripping whitespace from the beginning
and end of an input string (using strip)

 Splitting an input string into a list of strings
(using split) and then converting the strings
in the list into appropriate types

5. The print function, including:

 Printing on multiple lines
or on the same line

 Using a string’s format method and
associated format specifiers to do
formatted output, especially: columns
lined up on decimal points, centering

6. Sequences: Lists, strings, tuples and range
expressions. Including:

 Indexing and slicing, including negative
indices. Accessing characters inside strings
inside lists, etc.

 The len function

 Concatenation (s1 + s2)
and duplication (s * n)

 String methods like: capitalize count
find format index join lower replace
strip split title upper

 List methods like: append count index
insert remove reverse sort

7. Definite loops, including:

 Counted loops through a range expression

 Looping directly through a list or string

 Looping through a list or string using its
indices as generated by a range expression

8. Functions and methods, including:

 Function definitions, including parameters

 Function and method calls, including those
with actual arguments

 Returning a value from a function and
capturing/using returned values

 Mutators and mutable parameters

 Optional parameters – defining, using

 Functions that call functions

9. Objects, including statements that:

 Construct an object

 Apply a method to an object

 Reference an instance variable of an object

Zellegraphics as an example of classes,
constructors, methods and objects

10. Conditionals, including:

 The three forms:
 if

 if-else

 if-elif-elif...-else

 Relational operators on numbers/strings:
< > <= >= == !=

 Boolean operators:
and or not

11. import statements, in their three forms:
 import blah

 from blah import x, y, z

 from blah import *

12. Reading and writing to files:

 Opening a text file for reading or writing.
Closing a file.

 Writing to a text file using write

 Reading from a text file using the form:
 for line in file:

 ...

Sample problems of each of these items appear later in this document. If you don’t
understand what an item here is asking, see if the example problem clarifies matters for you.

Page 4 of 25

For the On-the-Computer portion of Exam 1, students should be able to:

Class A items: Study these items first and expect much of the test to focus upon them.

 Class B items come later in this list.

The List of Concepts from the Paper-and-Pencil description
above applies to this portion of the exam as well.

1. Write short programs and/or functions that are
examples of the input/compute/output pattern. Be able to:

a. Use the input function to get input from the console, including:

 Provide a prompt

 Convert an input string into a number (integer or floating-point) using the int

and float functions

b. Use variables to store the input and perform numeric computations using:

 Operators: + - * / // % **

 Functions: abs cos sin pi sqrt round

c. Use print to display results on the console

2. Define functions that have parameters and (possibly) return values. Be able to:

a. Write the def portion of a function definition, given (in ordinary English) the name
of the function and a description of its parameters.

b. Write the function body, using the parameters and other local variables as needed.
Display an understanding of:

 The fact that a parameter is a name for a value that comes into the function

 The relationship of parameters and other local variables to variables with the
same name outside the function

 When and why to introduce local variables

c. Return a value if called for by the problem

3. Call (invoke) functions, both ordinary functions and methods, and use the returned value (if
any), perhaps by capturing it in a variable.

4. Use definite loops and sequences

a. Write a counted loop, that is, a loop that iterates a given number of times, by using a
range statement, in any of its three forms: range(n) range(m, n) range(m, n, d)

b. Use the loop variable as called for by the problem.

c. Iterate through a list or string in either of two ways, as necessary:

Sample problems of each of these items
appear later in this document. If you don’t
understand what an item here is asking, see if
the example problem clarifies matters for you.

Looping directly through a list or string, e.g.

 for item in listOfThings:

 ... item ...

Looping through a list or string using its indices
as generated by a range expression, e.g.

 for k in range(len(listOfThings)):

 ... listOfThings[k] ...

Page 5 of 25

d. Use the Accumulator Loop pattern to accumulate things like a:

• sum • count • product • list • string • max/min

5. Use conditional statements, in any of their 3 forms:

if if-else if-elif-elif...-else

 Use comparison operators: == != > < >= <=

 Use Boolean operators: and or not

6. Use objects:

a. Construct an object that is an instance of a class

b. Apply methods to the object

c. Reference instance variables of the object (but note: usually we use accessor methods
instead of directly accessing the object’s instance variables)

Also, display an understanding of:

d. How to determine what methods apply to an object

e. The distinction between an object and a class that it is an instance of

7. Apply the above to zellegraphics:

a. Construct (and hence display) a GraphWin

b. Construct and use a Point, Line, Circle, Rectangle, Polygon, Text, Entry
 (DCM: I am not sure if Entry is fair game for Exam 1, will let you know)

c. Apply methods to the above, including (not all of these apply to all of the above!):

• draw • undraw • move • getMouse • close

• getters like: • getX • getY • getCenter • getRadius
 • getWidth • getHeight

• setters like: • setFill • setOutline

d. Do an animation (using time.sleep)

8. Debug your code:

a. Use Eclipse to correct compile-time errors like this example:

b. Use the red error messages in the Console window to know the line at which the
program broke and the general nature (at least) of the error

c. Use the Debugger to track down harder-to-diagnose run-time errors

9. Test your code: Supply calls in main or elsewhere that call your functions with parameters
that help test your functions, printing returned values as appropriate.

10. Document your code, using appropriate documentation strings (doc-comments) and
internal comments (with # signs)

11. Submit your code, using SVN as usual.

Page 6 of 25

Class B items: Study these items only after you have
mastered the Class A items, as they form a smaller
(and less critical) part of the test.

1. String manipulation, input. Be able to:

a. Strip whitespace from the beginning and end of an input string (using strip). Know
when to do so.

b. Split an input string into a list of strings (using split) and then convert the strings in the
list into appropriate types

2. String manipulation, output. Be able to use a string’s format method and associated
format specifiers to do formatted output, especially lining up in columns (text or integers
right-justified, floating point numbers lined up on their decimal points), limiting the
precision displayed, centering and filling.

Also, be able to print output on a single line or multiple lines, as needed.

3. String manipulation, other. Be able to:

a. Use the len function

b. Concatenate (s1 + s2) and duplicate (s * n) strings

c. Use string methods like: capitalize count find format index join lower
replace strip split title upper

4. Character manipulation. Be able to:

a. Use character functions chr and ord.

b. Understand how they relate to Unicode and encoding/decoding.

5. List manipulation. Be able to:

a. Use indexing and slicing, including negative indices, in more sophisticated ways than
simple indices through a sequence.

b. Access characters inside strings inside lists, etc.

c. Use the len function

d. Use list methods like: append count index insert remove reverse sort

6. Mutators. Be able to:

a. Write mutators.

b. Use mutators.

c. Understand how they differ from functions that return their answer.

d. Know what data types are mutable (lists) and not mutable (strings, tuples).

Sample problems of each of these items
appear later in this document. If you don’t
understand what an item here is asking, see if
the example problem clarifies matters for you.

Page 7 of 25

7. Reading and writing to files. Be able to:

a. Open a text file for reading or writing. Close a file.

b. Write to a text file using write

c. Read from a text file using the form:

 for line in file:

 ...

8. Define and use optional parameters.

9. Return multiple values (as a tuple). Capture such returned values using simultaneous
assignment.

10. Use type to determine the type of an object

11. Do simple procedural decomposition – breaking a problem into functions. (We’ll do much
more of this in the next few weeks. This will be a major topic of Exam 2.)

Page 8 of 25

Sample Problems for the Paper-and-Pencil portion of Exam 1

 These sample problems are just that – samples. The problems on the exam may look
both similar to and somewhat different from the samples.

1. What gets printed by the following arithmetic operations:

a. 5 / 2

b. 5 // 2

c. 5.0 / 2 + 2

d. 3.0 + 1 / 2

e. 18 % 4

f. 18.0 // 4.0

g. 2 ** 4

2. What gets printed by this loop?

for k in range(1, 4):

 print(k, k ** 2)

 print(k ** 3)

print("Done")

3. What gets printed by this loop?

for j in range(3):

 print("Hello", end='')

print("Goodbye")

4. What does each of the following expressions evaluate to?

a. list(range(2, 11, 3))

b. """xxx'hello'xxx"""

c. "one" + "three"

d. "one" * 3

e. "101,99,-73".split(",")

f. "101 99 -73".split(" ")

g. "xx" + " 101 99 -73 ".strip() + "yy"

This page has:
Sample problems for Paper-and-Pencil #1a:
Trace short snippets of code (less than, say,
10 lines or so) and show what gets printed or
the values of indicated expressions.

Page 9 of 25

5. Assume that the following is executed:

 x = [10, 20, 30, 40, 50]

Then, what does each of the following expressions evaluate to? (If an error, indicate so.)

a. x[2]

b. x[0]

c. x[5]

d. x[-1]

e. x[-2]

f. x[1:3]

g. x[3:1]

h. x[-1:-3]

i. x[1:5:2]

6. Assume that the following is executed:

 s = "forget me not"

Then, what does each of the following expressions evaluate to? (If an error, indicate so.)

a. s[2]

b. s[0]

c. s[5]

d. s[-1]

e. s[-2]

f. s[1:3]

g. s[3:1]

h. s[-1:-3]

i. s[1:5:2]

j. s.split(" ")

k. "xx" + s.strip() + "yy"

7. What gets printed by the following snippet?

x = [100, 20, 600, 40, 33]

for k in range(1, len(x)):

 print(k, x[k], x[k - 1], x[(k * 2) % 5])

This page has more:
Sample problems for Paper-and-Pencil #1a:
Trace short snippets of code (less than, say,
10 lines or so) and show what gets printed or
the values of indicated expressions.

Page 10 of 25

8. Suppose that the following functions have been defined:

def g(a, b):

 print("(", a, "of", b, ")")

 def f(n):

 for k in range(1, n + 1):

 g(k, n)

 g(n, k)

 g(k, k)

 return n ** 2, n ** 3

def main:

 x, y = f(3)

 print(x + y)

Then, what does calling main cause to be printed? (If any error, indicate so.)

9. Suppose that the following functions have been defined:

 def f(n):

 sum = 0

 for k in range(1, n + 1):

 sum = sum + k

 return sum

def main:

 k = 8

 sum = 10

 y = f(3)

 print(k, sum, y)

Then, what does calling main cause to be printed? (If any error, indicate so.)

This page has more:
Sample problems for Paper-and-Pencil #1a:
Trace short snippets of code (less than, say,
10 lines or so) and show what gets printed or
the values of indicated expressions.

Page 11 of 25

10. What gets printed by the following?

 quotesList = ["Looks like you've been missing a lot of work lately.",

 "I wouldn't say I've been *missing* it, Bob."]

 print(quotesList[1])

 print(quotesList[1][2])

 print(quotesList[1][2:4])

11. What gets printed by the following code snippet?

circleA = Circle(Point(100, 400), 10)

circleB = circleA

circleA.move(15, 0)

print(circleA.getCenter().getX())

print(circleB.getCenter().getX())

12. Suppose that the following functions have been defined:

 def foo(x, y):

 x[0] = 100

 y = [200, 300, 400]

 y[0] = 666

 def main():

 x = [1, 2, 3]

 y = [4, 5, 6]

 foo(x, y)

 print(x, y)

Then, what does calling main cause to be printed? (If any error, indicate so.)

This page has more:
Sample problems for Paper-and-Pencil #1a:
Trace short snippets of code (less than, say,
10 lines or so) and show what gets printed or
the values of indicated expressions.

Page 12 of 25

13. For each of the following, indicate what is wrong with it (nothing is a possible answer) and,
if something is wrong, indicate how to correct the error.

a. number1 = input("Enter an integer: ")

number2 = input("Enter an integer: ")

print(number1 * number2)

b. number1 = 12

number2 = 5

print(average is:, (number1 + number2) / 2))

c. number1 = 12

number2 = 5

print("average is:", (number1 + number2) // 2))

d. s = ("jolly good!")

print("the beginning letter is:", s[1])

This page has:
Sample problems for Paper-and-Pencil #1b:
Indicate errors in short snippets of code.

Page 13 of 25

14. Write range expressions that generate:

a. [4, 5, 6, 7, 8]

b. [10, 8, 6, 4, 2, 0, -2]

c. [0, 1, 2, 3]

This page has:
Sample problems for Paper-and-Pencil #2a:
Write short snippets of code, especially:
range expressions for common ranges

Page 14 of 25

15. For each of the following, write a simple loop whose output is as given:

a. 4

 5

 6

 etc [not the letters ‘etc’, but the pattern as indicated]

 100

b. 400

 397

 386

 etc [not the letters ‘etc’, but the pattern as indicated]

 310

c. [4, 5, 6, etc [not the letters ‘etc’, but the pattern as indicated], 100]

This page has:
Sample problems for Paper-and-Pencil #2b:
Write short snippets of code, especially:
loops that generate/print simple sequences

Page 15 of 25

16. Write a function called power that takes two parameters, both of which should be numbers.
The function returns the first parameter raised to the power specified by the second
parameter.

This page has:
Sample problems for Paper-and-Pencil #2c:
Write short snippets of code, especially:
function definitions, including those that
take parameters and/or return values.

This page has:
Sample problems for Paper-and-Pencil #2d:
Write short snippets of code, especially:
function calls, including follow-up code that
uses a returned value.

Page 16 of 25

4. Explain important concepts of software development, chosen from:

a. The difference between a specification and an implementation, and what a specification of a
function should include

b. Documentation: how and why we put internal comments and documentation strings (doc-
comments) in our programs

c. Software development tools: what is provided by a typical, modern:

 Integrated Development Environment (IDE)

 Version control system

 Debugger

d. Software development processes:

 What are some important phases of software development?

 What is procedural decomposition, and why are functions useful?

 What is a compiler? An interpreter?

 What is an algorithm?

e. Key ideas of object-oriented programming, including:

 What makes objects different from traditional data types, namely: objects know stuff
(stored in instance variables) and can do stuff (via methods)

 Why object-oriented programming is valuable

 The difference between a function and a method, and the different notations for
invoking them

 The difference between an object and a class to which that objects belongs

 The difference between accessor and mutator methods

f. What is the difference between the int and float data types? What are the limitations

of each? When should use one and when the other?

The implications of the fact that variables in Python are names that point to values in memory, that
is, variables are references to their values

1. Why do we put:

a. Comments in our programs?

b. Documentation strings in our programs?

What is the notation for each of the above?

While you might see some
problems of type #3,
don’t expect a lot of such
questions and don’t expect
them to be deep.

A simple understanding of
these concepts is adequate.

Page 17 of 25

Sample Problems for the On-the-Computer portion of Exam 1

 These sample problems are just that – samples. The problems on the exam may look
both similar to and somewhat different from the samples.

1. Implement and test a function that prompts the user for a radius and a height and inputs
values for those variables. The function then prints the volume of the cylinder with that
radius and height. (Hint: V = π r2 h)

2. Implement and test a function that prompts the user for two strings and prints the first
letter of the second string immediately followed by the last letter of the first string.

This page has
Sample problems for On-the-Computer #1:

 Write short programs and/or functions that are
examples of the input/compute/output pattern.

Page 18 of 25

3. Implement and test a function called cylinderVolume that receives two parameters: a
radius and a height. The function returns the volume of the cylinder with that radius and
height. (Hint: V = π r2 h)

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

4. Implement and test a function called drawPolygon that takes 3 parameters: a list of Points,
a GraphWin and a string that represents a color. The function creates a Polygon of the
given color with the given Points, and then draws that Polygon on the given GraphWin.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

5. Consider the drawPolygon function in the previous exercise. You probably introduced a
local variable in your solution to that problem. Why was a local variable helpful in the
solution of that problem?

Extra credit problem (just for grins): Implement the drawPolygon function without
using a local variable.

6. Implement and test a function called max_min that takes two numbers and returns a 2-
tuple: the larger of those two numbers and the smaller of those two numbers.
Implementation requirement: you may not use the built-in max or min functions.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

7. Explain, by giving a concrete example, what a parameter is. What a local variable is.

8. Write code that demonstrates that the name of a parameter in a function has nothing to do
with the name of the actual argument used in a function call of that function.

This page has Sample problems for:

 On-the-Computer #2: Define functions that have parameters and (possibly) return values.

 On-the-Computer #3: Call (invoke) functions, both ordinary functions and methods, and
use the returned value (if any), perhaps by capturing it in a variable.

 On-the-Computer #9: Test your code.

 On-the-Computer #10: Document your code.

Page 19 of 25

9. Write an expression that prints the absolute value of x, using the built-in function abs.

10. Write an expression that sets the variable z to the sum of the numbers in list x and those in
list y, using the built-in function sum.

11. Implement and test a function called use_max_min that has two parameters x and y and
uses max_min (as specified in a previous problem) to print the square of the larger of x and
y, followed by the cube of the smaller of x and y.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

12. Suppose you have defined the drawPolygon function described in a previous sample
problem. Call this function with appropriate values, constructing objects as needed.

13. Suppose that you have three Point objects (where Point is defined in zellegraphics), called
p1, p2 and p3. Write an expression that prints the sum of their x-coordinates.

14. Suppose that you have a Circle object (where Circle is defined in zellegraphics), called
circle1. Write a statement that sets the fill color of circle1 to 'red'.

This page has Sample problems for:

 On-the-Computer #3: Call (invoke) functions, both ordinary functions and methods,
and use the returned value (if any), perhaps by capturing it in a variable.

Page 20 of 25

15. Use range expressions to generate the following:

 [3, 5, 7, 9, 11]

 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 [10, 9, 8, 7]

16. Implement and test a function called printList that takes a list w and prints the elements of
list w, one per line:

 Using a range expression (and whatever else is necessary to answer this question)

 Without using a range expression

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

17. Implement and test a function called accumulator that takes a list of numbers and returns a
4-tuple with:

• the sum of the cubes of the numbers

• a list containing the cubes of the numbers

• the number in the list whose cube is largest

• how many of the numbers are positive

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

This page and the next page have Sample problems for:

 On-the-Computer #4: definite loops and sequences

Also, secondarily:

 On-the-Computer #9: Test your code.

 On-the-Computer #10: Document your code.

Page 21 of 25

18. Implement and test a function called
backwards that takes a string s and
prints s backwards.
Implement this function three times:

a. Using a relevant string function (no explicit loop).

b. Looping directly through the string.

c. Looping through the string using its indices, as generated by a range expression.

Test your functions by writing code in main that calls your functions several times, each time
with different parameters that help test them, printing returned values as appropriate.

Document your functions by including appropriate documentation strings. Document your
function calls in main by including a BRIEF, appropriate internal comment.

19. Implement and test a function called reverse that takes a string s and returns a string
containing all the characters of s in reverse order.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

20. Implement and test a function called printListOdd that takes a list w and prints the odd-
numbered elements (i.e., elements 1, 3, 5, 7, etc – numbering starts at 0) of w, all on a
single line, separated by spaces.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

21. Implement and test a function called makeStringOdd that takes a string s and returns a
string containing the odd-numbered elements (i.e., elements 1, 3, 5, 7, etc – numbering
starts at 0) of s.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

22. Implement and test a function called countLower that takes a string and returns the
number of lower-case alphabetic letters in the string.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

This page and the previous page have Sample problems for:

 On-the-Computer #4: definite loops and sequences

Also, secondarily: On-the-Computer #9: Test your code.

 On-the-Computer #10: Document your code.

Page 22 of 25

23. Implement and test a function called onlyAbc that takes a string and returns True if the
string contains only the letters a, b, or c (upper or lower case, they can be repeated many
times in any order, returns True in all those circumstances), else returns False.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

24. Implement and test a function that takes a number score and prints whether the associated
letter grade is an A, B, C, D or F (in the usual 10-point scale). You may assume the number
score is between 0 and 100.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

25. Implement and test a function that takes three numbers and returns the “middle” one: e.g.
if the numbers are 100, 110 and 90, the returned value is 100.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

This page has Sample problems for:

 On-the-Computer #5: conditionals

Also, secondarily: On-the-Computer #9: Test your code.

 On-the-Computer #10: Document your code.

Page 23 of 25

26. Write a statement that constructs a Point object whose x-coordinate is 100 and whose y-
coordinate is 50, and assigns the constructed object to a variable called p1.

27. Write a function that takes a Rectangle and returns a 2-tuple with its area and perimeter.

28. Write a statement that sets the fill color of the Circle called c to ‘green’.

29. Suppose that I gave you a new module that contains methods that apply to Student objects.
How would you, in Eclipse, determine what methods a Student can do?

30. Implement and test a function called circles that displays a GraphWin and causes the
following to happen 5 times: when the user clicks the mouse, the program draws a circle at
the point where user clicked.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

31. Same as the previous, but when the user clicks the previously-drawn circle disappears.

32. Implement and test a function called lines that displays a GraphWin and causes the
following to happen 5 times: when the user clicks the mouse twice, the program draws a
line from the first mouse-click to the second one.

Test your function by writing code in main that calls your function several times, each time with
different parameters that help test it, printing returned values as appropriate.

Document your function by including an appropriate documentation string. Document your
function calls in main by including a BRIEF, appropriate internal comment.

Page 24 of 25

A longer problem:

Write a Python program (in file house.py) that allows the user to provide five clicks
incrementally that it uses to draw a simple five-click-house in a 600 x 500 graphics window, as
depicted in the figure below. Work in stages:

a. Prompt the user to click twice in the window, upper left corner first, to specify the opposite
corners of the frame of the house. The program should remember these points and use them
now to draw the rectangular frame of the house.

b. Prompt the user to click once on the window to specify the upper left corner of the front door.
The program should draw a rectangular door that is 1/5 the width of the rectangular frame;
vertically it goes from the upper left corner point to the base of the rectangular frame.

c. Prompt the user to click once to specify the center of a square window. The program should
draw a square window whose side is half the height of the front door.

d. Prompt the user to click once, above the house frame, to specify the peak of the roof. The
program should draw a triangular roof that extends from the point at the peak to the corners at
the top edge of the house frame. [Recall zellegraphics Polygon.]

e. Animate the set of shapes so they slowly move all together off the screen.

The picture below shows where the user clicked to get the picture. Your picture should NOT include
the circles at the click points.

Page 25 of 25

A word of advice: This document is huge,

because it tries to indicate everything that you might
be expected to do on Exam 1. Of course, you won’t
be tested on all of this!

Prioritize your efforts:

1. Skim this page, so that you know the format of the
exam and what resources you are permitted for
each of the 2 parts.

2. Skim pages 2-3 (for Paper-and-Pencil part) and 4-5
(for On-the-Computer part). For each, circle the
items that you are unsure about.

3. Talk to someone – your instructor, Review Session
people, classmates, trusted friends – about your
circled items. Make notes as needed.

4. As time permits, choose some Practice Problems
to try – ones that you don’t know how to do (skip
the ones that you do know how to do) and that
you think might help your learning and your score
on the test. Strive for big ideas first.

5. As time permits, either solidify your
understanding of the big-ticket ideas, or go back
to pages 6-7 for lesser items on the On-the-
Computer part and repeat step 3 on those. Try
more Practice Problems, either big-ticket ideas of
the lesser ideas, depending on where you are in
your mastery of this course.

Finally, note that we have covered at least 75% of the
ideas of the entire course already. Over the next 7
weeks, we do the critical step of practice, practice,
practice (especially in the form of a way-cool project,
followed by seeing the same Python ideas but in

