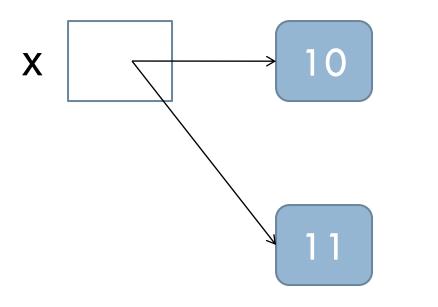
ASSIGNMENT, LOOPS, AND BASIC TYPES

CSSE 120 - Rose-Hulman Institute of Technology


Outline (some of Chapters 2 and 3)

- Variables and assignments
- Definite loops
- Basic types: numbers (int and float)
- Math library
- Accumulator problem

Variables and Assignments

- Variable
 - Identifier that stores a value
 - A value must be assigned to the variable
 - \square <variable> = <expr> (syntax)
- Assignment
 - Process of giving a value to a variable
 - Python uses = (equal sign) for assignment
 - x = 0.25
 - x = 3.9 * x * (1 x)

Variables as sticky notes

$$x = 10$$

$$x = x + 1$$

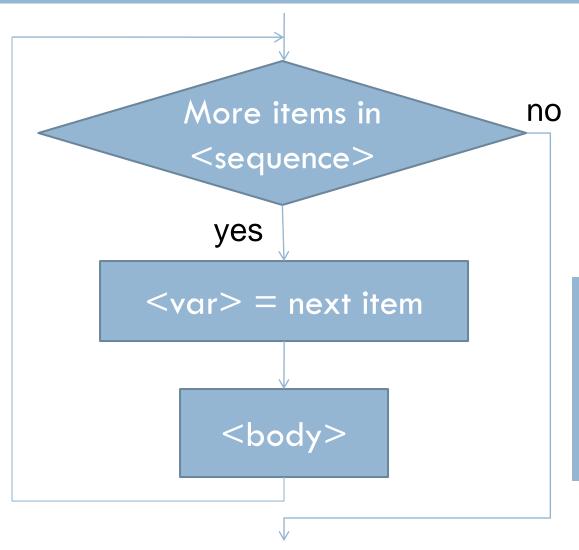
Assignment Statements

- Simple assignments
 - < <variable> = <expr>
- 2. Input assignments
 - \square <variable> = input(<prompt>)
 - temp = input("Enter high temperature for today")
- 3. Compound assignments
 - - **Example:** total += 5 is the same as total = total + 5
- 4. Simultaneous assignments
 - \square <var>, <var>, <var> = <expr>, <expr>, ..., <expr>
 - \blacksquare sum, diff = x + y, x y

Sequences

- □ A list of things
- For example:
 - **[2, 3, 5, 7]**
 - ["My", "dog", "has", "fleas"]
- □ Some can be generated by the **range** function:
 - range(<expr>)
 - range(<expr>, <expr>)
 - range(<expr>, <expr>, <expr>)

Definite loops


- Definition
 - Loop: a control structure for executing a portion of a program multiple times
 - Definite: Python knows how many times to iterate the body of the loop
- Syntax:

```
for <var> in <sequence> :
     <body>
```

Examples using loops

```
Loop index
                                                 Loop sequence
>>> for i in [0, 1, 2, 3, 4, 5]:
          print 2**i
>>> for i in range(6):
                                           Loop body
          print 2**i
>>> for b in ["John", "Paul", "George", "Ringo"]:
         print b, " was a Beatle"
```

Flowchart for a for loop

Trace this by hand:

print a

An *accumulator* combines parts of a list using looping.

We'll use this idea often this term!

Data types

□ Data

- Information stored and manipulated on a computer
- Different kinds of data will be stored and manipulated in different ways

□ Data type

- A particular way of interpreting bits
- Determines the possible values an item can have
- Determines the operations supported on items

Numeric data types

```
print "Please enter the count of each kind of coin."
quarters = input("Quarters: ")
dimes = input("Dimes: ")
nickels = input("Nickels: ")
pennies = input("Pennies: ")
total = quarters * 0.25 + dimes * 0.10 + nickels *
  .05 + pennies * .01
print "The total value of your change is", total
```

Finding the Type of Data

- Built-in function type(<expr>) returns the data type of any value
- Find the types of: 3, 3.0, -32, 64.0, "Shrubbery", [2, 3]
- Why do we need different numerical types?
 - Operations on int are more efficient
 - Compute algorithm for operations on int are simple and fast
 - Counting requires int
 - Floats provide approximate values when we need real numbers

Built-in Help

□ dir() dir(<identifier>) help(<identifier>) □ To see which functions are built-in, type: dir(__builtins__) □ To see how to use them, type: help(__builtins__)

Some Numeric Operations

Operator	Operation
+	Addition
-	Subtraction
*	Multiplication
/	Division
**	Exponentiation
%	Remainder
//	Integer division (even on floats)
Function	Operation
abs(x)	Absolute value of x
round(x, y)	Round x to y decimal places
int(x)	Convert x to the int data type
float(x)	Convert x to the float data type

Math library functions

Quadratic formula to find real roots for quadratic equations of the form $ax^2 + bx + c = 0$

Solution:

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

- Write out the Python expression for the first formula.
- ☐ If you have time, test it in IDLE

More math library components

Python	Mathematics	English
pi	π	Approximation of pi
е	е	Approximation of e
sin(x)	sin x	The sine of x
cos(x)	cos x	The cosine of x
tan(x)	tan x	The tangent of x
atan2(y, x)	$tan^{-1} y/x$	Arc tangent (inverse tangent) of angle of line from $(0,0)$ to (x, y)
log(x)	ln x	The natural (base e) log of x
log10(x)	log ₁₀ x	The base 10 log of x
exp(x)	e ^x	The exponential of x

EXPLORING WITH PYTHON

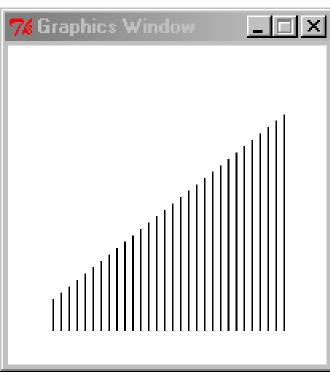
Pair Programming

- Working in pairs on a single computer
 - One person, the driver, uses the keyboard
 - The other person, the navigator, watches, thinks, and takes notes
- □ For hard (or new) problems, this technique
 - Reduces number of errors
 - Saves time in the long run
- Works best when partners have similar skill level
- If not, then student with most experience should navigate, while the other student drives.

Food tasting

- Suppose you are at food tasting show and are tasting 5 different dishes
- Sampling the dishes in different orders may affect how good they taste
- If you want to try out every possible ordering, how many different orders would there be?
 - That number is the factorial of 5
 - $n! = n (n 1) (n 2) \dots (1)$
- What type of problem is this?

Accumulating results: factorial


- Work in groups of two
 - Pick a driver and navigator
- Write a Python program that
 - Prompts the user for an integer
 - Calculates the factorial of the integer
 - = n! = n (n 1) (n 2) ... (1)
 - Outputs the result to the screen
- Driver: email the code to your partner (so each has the program for the open-computer parts of exams)
- Submit one copy of program with both student's names in a program comment.
- Submit it in ANGEL to the Lessons > Homework > Homework 3
 Factorial Drop Box

Graphics Exercise with loops

- □ Trade roles with partner—new driver, new navigator
- Write a program that draws a figure like this where the lengths of the lines increase by a constant amount
- Use your previous graphics program as a model of how to

import graphics functions, create a window, etc.

- You may want to use
 variables to hold current
 x-coordinate and current line length,
 and change the values of those
 variables each time through the loop
- □ Homework 3 > Bar Chart Drop Box

If you don't finish Factorial or Bar Chart program

- Meet before next class to finish them
- □ Reminders:
 - Driver: email the code to your partner (so each has the program for the open-computer parts of exams)
 - Submit one copy of program with both student's names in a program comment.
 - Log into Angel and go to the class's webpage
 - Click on the Lessons tab then go to Homework > Homework 3
 - Submit the factorial program in the Factorial Drop Box
 - Submit the line drawing program in the Bar Chart Drop Box