
SPLICE: Self-Paced Learning
in an Inverted Classroom Environment

Matt Boutell and Curt Clifton
Rose-Hulman Institute of Technology

5500 Wabash Ave.
Terre Haute, IN 47803-3999

812.877.8534

{boutell, clifton}@rose-hulman.edu

ABSTRACT
Learning to program is hard for many students. Practice with an
expert coach is key to overcoming this challenge. However,
finding time for this is an issue because presenting concepts,
showing examples, and modeling problem solving reduce the time
available for mentored practice. Pace is also an issue because
some students arrive with confidence and prior experience and are
thus bored, while other students labor and become overwhelmed.

To address these problems in CS1, we created on-line videos for a
C programming unit to present concepts, show examples, and
model problem solving. As a result, our students spend every class
session entirely in active learning activities with expert coaching,
receive more individual attention, and set their own pace.

1. SIGNIFICANCE AND RELEVANCE
Anyone who has taught introductory computer programming
courses understands that learning to program is hard for many
students. Most students readily grasp the basic pieces, but they fall
down in their logical thinking. They struggle to compose the basic
pieces to create software that solves a real problem. We often hear
some students say, “I understand all the concepts in class, I just
can't program.” Their exam performance supports that claim:
these students can answer conceptual questions, but have
difficulty actually solving problems by programming.

But solving problems by programming is the essential skill. Even
in our introductory courses, we’re focused on helping students
achieve competence at the application level in Bloom’s
taxonomy. Reading through the course outcomes we see words
like design, implement, test, debug, demonstrate, and solve. To
achieve this level of learning, students must practice.

Before students can practice, though, they need to learn basic
concepts (like syntax and control structures); get to know their
tools (like integrated development environments); and watch an
expert model the problem solving process. Then they can move
into structured practice, where they fill in pieces of the puzzle
under the guidance of an instructor and with appropriate
scaffolding. At this stage, students are developing comfort with
the basic concepts and tools, while the instructor coaches them.
Although students could do this on their own, many spend a
significant part of their work time on incidental challenges, like
syntax or obscure error messages, rather than the core concepts. A
coach can help the students move past the incidental challenges
and focus on the essential challenge of logical thinking.

As students build confidence, we gradually pull away the initial
scaffolding and ask them to solve more realistic problems. At this
stage, expert coaching and feedback are even more important. An
attentive instructor helps students continue to develop their skills

and confidence. Ultimately, students are able to work in teams,
independent of the instructor, on larger projects.

This progression of activities, from understanding basic concepts
through independent problem solving, is why we adopted a studio
format for our introductory courses. In a single class session,
students learn a new concept, experiment with it, and apply it to a
real problem, all with expert coaching at hand. While this format
has been effective, in practice, we still find two significant
problems: time and pace.

Time: We’ve found that we spend a majority of our class time,
even in a studio format, on the earliest stages in our progression of
activities. Although textbooks can describe the basic concepts,
they are abstract, so we spend some class time reiterating that
content. A textbook cannot provide examples of the dynamic
problem solving process, so we spend class time modeling that.
Students report that they appreciate these live coding examples,
where an instructor programs in front of the class and thinks aloud
about his or her problem solving process. Unfortunately, live
coding is not very interactive and consumes substantial class
time—time that would be better spent providing expert coaching.

Pace: The other problem we face is finding the right pace for our
introductory courses. It seems like regardless of the pace chosen,
midterm surveys and course evaluations show that some students
are bored while others are overwhelmed. While programming
takes time for most novices to learn, some students need even
more time. At the opposite end of the spectrum, other students,
either due to prior experience or great aptitude, quickly become
bored because the pace is too slow for them. This compounds the
problems of the slower students, who become intimidated not just
by the material, but also by their peers. This “erosion in
confidence” is particularly pronounced for women [1, ch. 5].
Furthermore, because the distribution of students tends to be fairly
uniform between the two extremes, using any lock-step approach,
regardless of pace, fails to meet the needs of many of our students.

To address the complementary problems of time and pace in CS1,
we replaced lectures, examples, and live coding in a C
programming unit with on-line videos. This maximizes the
amount of class time that students spend in mentored practice and
allows students to control the pace at which they digest the
material. The videos enable self-paced learning in an inverted
classroom environment, or SPLICE.

The SPLICE videos fall into two categories. Concept videos
introduce new concepts with short screencasts combining slides
and examples. These videos supplement and reinforce the
concepts presented in the course textbooks. Live coding videos
show an expert who models logical thinking by solving sample
programming problems while thinking aloud. These videos

present a thought process that cannot be readily conveyed by a
traditional textbook.

Students watch these videos to prepare for class. In the process,
they complete active learning exercises, such as answering quiz
questions and writing small code snippets. This helps them engage
with the material. To give students immediate feedback, a later
portion of each video gives solutions to the coding questions.

By using these videos, students arrive in class prepared to practice
the ideas to which they’ve already been exposed. We give them an
assignment over the material and they get right to work. The
instructor circulates, observing their work and offering
appropriate assistance. In class, students’ attention is focused on
active learning, while the instructor’s attention is focused on
coaching his or her students.

Using videos for instruction allows students who would have
struggled with concepts will be able to rewind and watch tricky
segments a second time. These students also benefit from a
greater share of the instructor’s time—time that can be spent
identifying the particular and individual sources of a student’s
confusion. Furthermore, students who would have found the pace
too slow are able to work quickly through material that they
already know and delve into more interesting problems.

A significant benefit of video lectures is their broad availability
over space and time. First, they are available to students learning
on their own or at other institutions worldwide via YouTube.1
Second, any student who has used the videos can reuse them for
reference when taking courses that expect familiarity with C, like
operating systems or computer networks.

The inverted classroom environment [2], in which lecture is
moved before class to make room for other in-class activities, is
not a new idea. Kaner and Fiedler [3] and Day and Foley [4] used
video lectures to invert their upper-level software courses. These
videos were merely a “talking head” in the corner of PowerPoint
slides, with no active learning component for students while
watching the videos. Furthermore, class time wasn’t used for
hands-on application of the ideas, but for further discussion of the
concepts. Gannod, et al. [5] used video podcasts to deliver full
lectures successfully to students in their introductory computer
science course, but their videos are not freely available.

In general, audio and video instruction to teach computer
programming is also not new, though we have not found anyone
who provides the same mix of concept coverage and sample
problem solving. Georgia State offers an Intro to Programming in
C# video course (as part of Apple’s iTunes U program), but it is
incomplete [6]. Trinity College (Dublin) offers Intro to Computer
Programming in C++ on iTunes U, but only some sessions are
available. The course is also specific to Mac OS X. UC Berkley’s
Computer Science 61C contains five lectures on introductory C
programming, but this course is the third in their CS sequence, so
presumes two full terms of programming experience. The Berkley
course is on iTunes U but is audio-only. MIT’s Open Courseware
includes EECS 6.00 Introduction to Computer Science and
Programming in Python [7]. This is a very different curriculum
than ours, taking a breadth-first approach. It is also not a
screencast, but a professor at a blackboard teaching concepts.
Stanford offers full video lectures for a three-course introductory

1 Our videos will be posted to YouTube following our initial

assessment stage.

software development sequence as part of the Stanford
Engineering Everywhere initiative [8]. This sequence begins with
Java. C is not covered until the third course. At the Naval
Academy, Carlisle assigns 5-minute YouTube clips to his
programming students, but the course is in Java [9]. A variety of
commercial training videos on C programming are also available
on-line, but they are all incomplete, inaccessible, or inappropriate
for our course sequence and tools [10-12].

2. POSTER CONTENT
In this poster, we will summarize the motivation for using self-
paced video instruction and expert coaching. We will provide
screenshots of both types of videos and examples of the
assessments students complete while watching the videos. We
will provide details of producing the videos, such as instructional
design, the effort required, and the environment needed. We will
include preliminary assessment of the approach, comparing
feedback and grades from three sections of CS1 taught using the
videos to that from three sections taught via traditional lecture.
We will include future plans to add more self-pacing, to expand
this approach to other topics, and to perform a detailed,
longitudinal assessment. We will also demonstrate each of the
videos on a laptop.

3. ACKNOWLEDGMENTS
This work was funded by a Rose-Hulman Summer Professional
Development grant.

4. REFERENCES
[1] Margolis, J. and Fisher, A. 2002. Unlocking the Clubhouse:

Women in Computing. MIT Press.

[2] Lage, M., Platt, G., and Treglia, M. 2000. Inverting the
classroom: A gateway to creating an inclusive learning
environment. J. Econ. Educ. 31, 1 (Winter, 2000), 30-43.

[3] Kaner, C. and Fiedler, R. 2005. Blended learning: A software
testing course makeover. 11th Sloan-C Int. Conf. on
Asynchronous Learning Networks, Orlando, FL, Nov. 2005.

[4] Day, J. and Foley, J. 2006. Evaluating a web lecture
intervention in a human-computer interaction course. IEEE
T. Educ. 49, 4 (Nov. 2006), 420-431.

[5] Gannod, G. C., Burge, J. E., and Helmick, M. T. 2008. Using
the inverted classroom to teach software engineering. 30th
Proc. Int. Conf. Software Eng., Leipzig, Germany, May
2008, 777-786.

[6] http://www.apple.com/education/itunes-u/ (accessed
4/7/2010).

[7] http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-
Computer-Science/index.htm (accessed 4/7/2010).

[8] http://see.stanford.edu (accessed 4/8/2010).

[9] Carlisle, M., 2010. Using YouTube to enhance student class
preparation in an introductory Java course. SIGCSE Bull.,
Milwaukee, WI, Mar. 2010.

[10] http://www.computer-training-software.com/c-
programming.htm (accessed 4/5/2010).

[11] http://www.softwaretrainingtutorials.com/c-
programming.php (accessed 4/5/2010).

[12] http://showmedo.com/videotutorials/series?name=MjNtBGU
sy (accessed 4/5/2010).

