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Abstract

The Rigi environment is a mature research tool that provides functionality to reverse engineer
software systems. With Rigi large systems can be analyzed, summarized, and documented. This
is supported with the extraction of information from source code, an exchange format to store
extracted information, analyses to transform and abstract information, and visualization of
information in the form of typed, directed graphs.

In this paper we describe Rigi’s main components and functionalities, and assess its impact
on reverse engineering research and practice. Furthermore, we discuss Rigi’s architecture and
motivate design decision that resulted in a decoupling of major functionalities and achieved tool
extensibility, interoperability, and end-user programmability.
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1. Introduction

“Week by week his understanding of his world improves, the white spaces on his map
filling up with trails and landmarks.”
– Hari Kunzru, The Impressionist

Reverse engineering of a software system is performed for a broad variety of reasons
ranging from gaining a better understanding of parts of a program, over fixing a bug, to
collecting data as input for making informed management decisions. Depending on the
reasons, reverse engineering can involve a broad spectrum of different tasks. Examples
of such tasks are slicing, clustering, database or user interface migration, objectification,
architecture recovery, metrics gathering, and business rule extraction.
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Software systems that are targets for reverse engineering, such as legacy applications,
are often large, with hundreds of thousands or even millions of lines of code. As a re-
sult, it is almost always highly desirable to automate reverse engineering activities. The
Rigi environment 1 provides such tool support. The reverse engineering community has
developed many reverse engineering environments. Prominent examples of other tools
besides Rigi include SHriMP [68], Moose [8], Ciao/CIA [2], and Columbus [11]. Reason-
ing System’s Software Refinery is an example of a commercial tool that has influenced
and enabled reverse engineering research [1].

The rest of the paper is organized as follows. Section 2 summarizes Rigi’s impact
on reverse engineering research and tools in academia and industry. Section 3 describes
the functionality of the environment, covering the repository and data model, the fact
extractors, and the graph-based, interactive editor. Section 4 addresses Rigi’s availability
and user support. Section 5 distills tool-building experiences and lessons that we learned
in the design and implementation of Rigi. Section 6 closes the paper with our conclusions.

2. Rigi’s Impact in Academia and Industry

Rigi is a mature research tool that is in its current form now more than a decade old.
In the following, we briefly identify Rigi’s contributions on academia and industry. Some
of these contributions are explained in more detail in the rest of the paper.
tool features: Rigi has pioneered the approach to reify software entities and their re-

lationships as graphical entities and to manipulate them interactively to enhance pro-
gram comprehension for software development and maintenance [39]. At the time Rigi
was conceived, there were other approaches to leverage graphical visualizations for
software, but they were primarily geared to aid in the design of software systems.
For example, Software through Pictures used graphical editors to represent data-flow
diagrams, entity-relationship models, and data structure definitions [65].

case studies: A significant number of reverse engineering case studies have been con-
ducted with Rigi. These case studies cover a broad range of systems and languages
and testify of Rigi’s effectiveness to support reverse engineering tasks. Furthermore,
the case studies were useful to identify improvements for Rigi in functionality and user
interaction design.

In the following we briefly describe some of the documented case studies. For the
xfig drawing tool (which is written in C) an architecture analysis was conducted
with Rigi for a working session at WCRE 2000 [34]. In a similar study, a ray tracer
written in C (12 KLOC) was reverse engineered with Rigi [41] [38]. Rigi has also
participated in the Sortie structured tool demonstration along with five other tools [24].
The demonstration’s purpose was the reverse engineering of the Sortie legacy system,
which consists of 30 KLOC of Borland C++ code [54]. For the VISSOFT 2007 Tool
Demo Challenge, Rigi was used to recover the architecture of the Azureus BitTorrent
client (Java, 300 KLOC) [23]. Rigi was also used to visualize link dependencies of two
web sites (550 and 3500 pages) [33].

1 Even though we use the terms environment and tool interchangeably for Rigi, we view an environment
as more powerful than a tool. Environments provide many tools with diverse functionalities under one
roof, whereas a single tool is designed for a particular (major) function.
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Rigi has been used in industrial contexts as well. For example, it has been used on
an industrial health care application of 57,000 lines of Cobol code [40], and on IBM’s
SQL/DS database system [1] consisting of two million lines of PL/AS 2 code [67]. At
Nokia, Rigi has been used to recover the architecture of a mobile phone application
written in C [51]. In another industrial project, Rigi has been used to analyze and
visualize the structural dependencies of 700,000 lines of C/C++ code [35].

software redocumentation methodology: The reverse engineering of (industrial) sys-
tems with Rigi has generated valuable experiences. These experiences have also shaped
Rigi’s methodology of how to reverse engineer—or redocument—(legacy) systems.

Rigi supports an approach to reverse engineering that recognizes that this activity
has inherently creative elements that cannot be fully automated by a tool. However, a
tool should allow to automate lower-level, repetitive tasks that are otherwise tedious to
perform and distracting for reverse engineers. Consequently, Rigi is a human-involved
tool [16] that offers both interactive and automated functionality. Furthermore, there
is no fixed segregation of interactive vs. automated functionality in Rigi because task-
specific interactions can be automated by reverse engineers on demand using Rigi’s
scripting functionality. This has been coined programmable reverse engineering [63].

exchange format: Rigi defines the Rigi Standard Format (RSF) [66], which has been
adopted by a number of other tools as well. RSF has inspired other tuple-based for-
mats such as Holt’s Tuple-Attribute language (TA) [13]. Rigi’s graph model was also
inspirational for the Graph Exchange Language (GXL) [14].

exploratory research and tool prototypes: The Rigi environment can be seen as a
tool platform that enables exploratory research in the reverse engineering domain. Es-
pecially, Rigi enables the rapid prototyping of novel analyses and visualizations. The
following tools are based on Rigi, but provide major enhancements to Rigi’s function-
ality:
– Bauhaus [25]
– Nimeta [52, sec. 8.5] [53]
– Dali [19] [46]
The Bauhaus and Nimeta tools have been developed as dissertation works and realize
novel analyses and visualizations for program comprehension. Dali has been partially
developed within the Software Engineering Institute and applied to industrial systems.

As can be seen, Rigi had an important impact on research tools and, to a lesser degree,
also on industry.

3. The Rigi Environment

Rigi is composed into three main entities that provide functionalities for (1) information
representation, storage, and exchange (repository), (2) fact extraction, (3) and interactive
graphical manipulation (editor). We discuss each of the main entities in the following
sections.

The typical workflow for the reverse engineering of software systems can be char-
acterized by three main activities: extract, analyze, and visualize [49]. A good reverse
engineering tool should provide support for all three activities. In Rigi, fact extraction

2 PL/AS is a PL/1 dialect used within IBM.
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is supported with a number of parsers and scanners (who produce output for the repos-
itory); analyses (both interactive and automatic) as well as visualizations are supported
with the graph editor.

3.1. Conceptual Architecture
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Fig. 1. Rigi’s conceptual architecture

Rigi’s conceptual architecture is depicted in Figure 1. The architecture exposes Rigi’s
main functionalities: extraction of facts from software systems (cf. Section 3.3), a reposi-
tory to represent and store facts (cf. Section 3.2), and analyses and visualization of facts
(cf. Section 3.4). The architecture shows two extractors for C++ (Rigi VisualAge parser)
and web sites (Web2Rsf parser) that exemplify that there can be an open-ended number
of different extractors for various domains.

As can be seen, Rigi is an example of a tool that decouples its extractors from the rest
of the system via its exchange format, RSF. However, Rigi’s analyses and visualization
are intertwined. Analyses (written in Tcl) are stored in separate text files, and use an
API to access and manipulate Rigi’s internal, in-memory graph model (implemented in
C/C++). Analyses are invoked interactively from Rigi’s visualizer (e.g., via selecting an
entry from a pull-down menu). Once an analyses is invoked, it can update the graph
model; for instance, a clustering analysis can create new high-level nodes and group
existing nodes into hierarchical structures. A changed state of the graph model is then
immediately reflected by the graph visualizer. Consequently, analyses cannot be executed
without running the visualizer itself.

3.2. Repository and Data Model

The most central component is the repository. It gets populated with facts extracted
from the target software system. Analyses read information from the repository and possi-
bly augment it with further information. Information stored in the repository is presented
to the user with visualizers. Examples of concrete implementations of repositories range
from simple text files to commercial databases.
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Rigi follows a lightweight approach by storing extracted facts in a single text file using
a dedicated exchange format. 3 This approach is taken by many reverse engineering tools
[21] [17]. Rigi defines the Rigi Standard Format (RSF) [66], which uses sequences of
tuples to encode graphs. A tuple either represents a node and its type, an arc between
two nodes, or binds a value to an attribute. The following example shows the RSF to
represent two C functions (f1 and f2) and a function call to f2 in the body of f1:
type f1 Function
type f2 Function
Calls f1 f2
Even though RSF has been created to represent facts for software reverse engineering,

it can encode any kind of information represented as typed, directed, attributed graphs.
Examples of other exchange formats in the reverse engineering domain are Holt’s Tuple-
Attribute language (TA) [13], Bauhaus’ Resource Graph (RG) [5], GUPRO’s GraX [9],
and the Graph Exchange Language (GXL) [14].

The facts that are stored in RSF adhere to a certain data model (or schema). 4 A RSF
data model is explicitly defined with a simple specification language that is also tuple-
based. There are three separate files that encode the nodes (Riginode), arcs (Rigiarc),
and attributes (Rigiattr) of a data model. There is an optional Rigicolor file to specify
the colors of nodes and arcs for the Rigi editor. Rigi’s approach is to keep the data and
the data model separate and there is no explicit association between them. In practice,
the user of the editor first specifies a data model (also called domains in the Rigi editor)
and then loads an RSF file. When the RSF is loaded it is validated against the chosen
domain.

The node specification contains a list of node types (one per line); the arc specification
contains a triple for the arc type and the source and destination node types (also one
per line). For example, a valid data model for the above example would be
# node types
Function
# arc types
Calls Function Function

Rigi defines (standard) data models for C, C++, and Cobol. These data models are
capable of representing middle-level information [30]. A middle-level model focuses on
the main program elements and their relationships, omitting complete syntax of code
while not abstracting information all the way up to generic architectural elements (i.e.,
components and connectors).

3.3. Fact Extractors

A reverse engineering activity starts with extracting facts from a software system’s
sources. Sources can be intrinsic artifacts that are necessary to compile and build the
system (such as source code, build scripts, and configuration files), or auxiliary artifacts
(such as logs from configuration management systems and test scripts).

3 The RevEngE project augmented Rigi with an object-oriented database system (ObjectStore) as its
persistent storage manager [43]. However, the results were not incorporated into the Rigi distribution.
4 An analogous example is data encode in XML that adheres to a certain XML Schema or Document

Type Definition (DTD).
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Rigi’s fact extractors target source code exclusively. Both the C (cparse) and Cobol
(cobparse) parsers are based on Lex and Yacc. There is also a C++ parser (vacppparse)
that is built on top of IBM’s Visual Age compiler [32]. 5 There are also fact extractors
developed by other groups that support Rigi (e.g., Columbus/CAN’s C/C++ parser and
SHriMP’s Java extractor).

For research projects additional fact extractors have been developed as well, but those
are not publicly available. For example, to analyze software documentation a scanner for
LaTeX was developed [62]. Similarly, to analyze the HTML of web sites, a Java-based
web crawler, called Web2Rsf, was developed [33]. In contrast, an ad-hoc approach was
taken to extract facts from PL/AS code based on lexical pattern-matching with Unix
scripts [67]. These scripts extract higher-level structural information (e.g., call graphs)
and represent them as C code, which can then be process with the C parser.

Another fruitful approach to obtain facts is to leverage a “foreign” extractor and to
write a converter that transforms the information that the extractor produces into RSF.
For example, to analyze Azureus we used facts provided in FAMIX/MSE and wrote a
Perl script to translate them into RSF [23].

3.4. Graph-Based Editor

The core of Rigi is a graph editor/drawing tool, rigiedit, enhanced with additional
functionality for reverse engineering tasks. Rigi’s core functionality is similar to the func-
tionality offered by generic graph editors. Graphs can be loaded, saved, and laid out;
the windows rendering a graph can be scrolled and zoomed; the graph’s nodes and arcs
can be selected, cut, copied, and pasted; and so on. The types of nodes and arcs along
with color information are described in Rigi’s domain model (cf. Section 3.2). Exam-
ples of reverse engineering functionality in the editor are the computation of cyclomatic
complexity and the navigation to the underlying source code that is represented by a
node. Rigi combines graphical visualization with textual reports (e.g., a list of a node’s
incoming and outgoing arcs) to provide information about the graphs at different levels
of detail.

Figure 2 shows a screenshot of the editor with a graph and two dialogs to filter the
graph data by node and arc types. The visualized graph shows the structure of IBM’s
SQL/DS system, which is over one million lines of PL/AS code [67]. Red nodes are
variables, yellow nodes are modules, and purple nodes are types. All arcs have been
filtered out except for the yellow ones, which represent calls between modules (i.e., the
graph shows the system’s call graph). The full graph contains 923 nodes and 2395 arcs,
but in this filtered view only 189 yellow arcs are actually visible.

Many reverse engineering tools now use graphs to convey information [26]. Examples of
visualizers similar to Rigi that have been developed by researchers for reverse engineering
and program comprehension are CodeCrawler [28], GSEE [10], LSEdit [55], VANISH [18],
Hy+ [4], G+ [3], ARMIN [47] [20], and SoftVision [59] [58]. Besides these editors, there
are also general-purpose graph layouters and editors. The EDGE graph editor is an early
example [44] [50]. AT&T’s Graphviz provides an interactive editor, dotty, which can be
customized with a dedicated scripting language, lefty [12] [45].

5 Unfortunately, IBM has dropped support for VisualAge C++ in many of the previously supported
platforms. As a result, the parser is currently only operational on AIX.
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Fig. 2. Software structure graph in Rigi

3.4.1. End-User Programmability
The editor provides support for scripting with the Rigi Command Language (RCL).

RCL is a transparent scripting layer between the GUI and the underlying graph model
implementation [61] [60]. RCL is a collection of Tcl commands (that are indistinguishable
from built-in commands). RCL provides low-level commands to manipulate graphs (e.g.,
creation of nodes and arcs as well as loading, saving, filtering, selecting, moving, and
layouting operations) and higher-level functionality to analyze graph properties. Gener-
ally, all graph functionalities that can be invoked from the GUI are also accessible via
RCL commands. For example, in Figure 2 the user can un-filter the red data arcs by
first ticking the appropriate box in the “Filter by Arc Type” window and then clicking
the “Apply” or “Done” button. The same effect can be obtained with the following RCL
script:
# set arc filter for window 5 (cf. Figure 2)
rcl_filter_arctype_filtered data 5
# apply the filter
rcl_filter_apply 5 arc

Rigi has an RCL console that allows the user to type in RCL commands, to select them
from a command list, or to execute a script file.

The Tk-based GUI is also implemented with Tcl and RCL. This approach makes it
possible to personalize Rigi’s user interface (e.g., adding a new menu item). Personaliza-
tion can be done at start-up or during execution of the editor. For example, Rigi provides
a hook to run a Tcl script whenever a certain domain is selected by the user. This way,
domain-specific analyses and GUI behavior can be easily realized.

Since RCL inherits the features of Tcl—prototyping based on scripting [48]—it allows
the user to rapidly develop new functionality and to customize the GUI. In other words,
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Rigi offers end-user programmability. Importantly, RCL introduces flexibility without
increasing complexity because users can ignore RCL and its features when using the
editor interactively.

4. Availability and User Support

Rigi has a dedicated web site that is available at www.rigi.cs.uvic.ca. The site offers
pre-compiled downloads of Rigi for various operating systems, including Windows and
Linux. The source code is available for download as well. The pre-compiled downloads
contain an executable (rigiedit) that can be directly invoked to bring up the GUI-
based graph editor (cf. Figure 2). There is also support to process C (cparse) and Cobol
(cobparse) source code as well as utilities to convert and manipulate RSF files (sortrsf,
htmlrsf, and rsf2gxl).

In order to flatten Rigi’s learning curve and to increase adoptability there are exten-
sive resources and documentation. In fact, Lanza has stated that the “best-documented
software visualization tool we know is Rigi” [28]. Rigi comes with a user’s manual of 168
pages that explains Rigi’s purpose, provides a quick tour of Rigi, and then covers all of
Rigi’s functionality in detail [66]. The Rigi editor comes with three sample systems of in-
creasing complexity that demonstrate how a software systems can be reverse engineered
with Rigi. The user runs these interactive demos directly within the editor. 6 The Rigi
site also provides a description of a subset of RCL and an example of reverse engineering
Mozilla. There is also a Wiki 7 that allows users of Rigi to add information about Rigi
and their experiences with it. The most useful resource currently available on the Wiki
are the Frequently Asked Questions (FAQ).

Active development of Rigi stopped in 1999, but occasional maintenance and bug fixed
were performed as well as porting to new Windows versions. The last official version of
Rigi was released in 2003. To this date, Rigi is still used in academia and industry for
teaching and research.

5. Experiences

This section provides a discussion of Rigi’s approach to reverse engineering and pro-
gram comprehension. We also distill experiences and lessons learned that analyze what
made Rigi a successful tool and what could be improved.

Perhaps the most important lesson that we learned is that approaches that support
reverse engineering have to be lightweight and flexible. The reverse engineering process
is characterized by trial-and-error. As a result, there is a constant jumping between
the central activities of fact extraction, analysis, and visualization. There is also a rapid
generation of hypotheses by the reverse engineer in the form of questions about the system
under analysis that need to be answered “instantaneously” in the best case. Furthermore,
reverse engineering activities are quite diverse and depend on many factors. Consequently,
reverse engineers have to continuously adapt their tools to meet changing needs. Thus,

6 A walk-through of one of these demos is also available on the Rigi web site at www.rigi.cs.uvic.ca/

downloads/demos/list-d/rigi.listdemo.html
7 www.program-transformation.org/Transform/RigiSystem
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it is not sufficient for a reverse engineering tool to be general (i.e., it can be used without
change in different contexts), it has to be flexible as well (i.e., it can be easily adapted
to a new context). Specifically, flexibility mandates tools that allow users to become
productive very quickly, that can be easily customized and extended, and that are able
to interoperate with other tools.

5.1. Graph Visualization

In a sense, the graph editor is the heart of the Rigi system. In many projects, only the
editor is used (ignoring the rest of the system), and only the editor’s interactive facilities
are used (ignoring RCL). Since the graph editor has been developed from the start to
render and manipulate large graphs, it scales up to graphs with thousands of nodes. To
obtain the needed performance for larger graphs, the graph model and the core algorithms
to manipulate it are implemented in C/C++, whereas higher-level algorithms are scripted
in Tcl. This split has been proven successful and was applied by other visualizers as
well (e.g., SoftVision [58]). Nowadays, an implementation that is exclusively based on a
scripting language such as Perl would be probably feasible.

Rigi has a fully-featured graph editor, but its graphical capabilities have not been
evolved in recent years. As a result, many desirable advances in software visualization are
now lacking. The most important deficiencies are that all nodes and arcs have the same
shape, and arcs have the same line thickness. Because of this, it is not possible to associate
metrics with graphical entities in Rigi. To work around this limitation, a metrics extension
in Rigi provides the values as node annotations (but the user has to open a textual view
to see them) [57]. An approach similar to polymetric views would be very desirable [29].
Furthermore, Rigi does not support drag-and-drop [6]; nodes (and associated arcs) have
to be copied via the clipboard. This style of interaction is less intuitive for users that
expect behavior of typical Windows applications. Lastly, to simplify creation of scripts it
would be useful to have recording and play-back feature (analogous to Microsoft Office).

During the reverse engineering of the Azureus system [23] we noticed several deficien-
cies that make interactive exploration unnecessarily difficult with Rigi:
– An arc between two nodes does not indicate how many dependencies it represents. To

find out this information it is necessary to open up a textual view with an arc list.
As a result, it is tedious to separate major from minor (or “spurious”) dependencies.
Other tools (e.g., Softwarenaut [31]) offer arcs with flexible line width.

– We sometimes destroyed interesting layouts of views because Rigi has no undo.
– There is also no easy way to move a node into a Collapse node. This can be only

accomplished with a sequence of expand, select, and collapse operations.
– When opening up a view it is not possible to right away apply an automatic layout if

the viewed graph is disconnected (precludes Spring) or cyclic (precludes Sugiyama).
– It is not possible to apply the Spring or Sugiyama layouts on a subset of selected

nodes. Other visualizer are more flexible in supporting mappings from node selection
to visualization operations (e.g., [59]).
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5.2. Fact Extraction

There are many approaches to construct a fact extractor for a particular target lan-
guage. For instance, an extractor can be implemented as a compiler front-end. This
implies a parser that produces a parse tree without ambiguities. Such a parser could be
implemented from scratch or with a parser generator like Yacc.

In contrast to parsing, there are lightweight approaches such as lexical extractors (or
“scanners”), which are based on pattern matching of regular expressions. Lexical ap-
proaches are not precise, that is, they can produce fact bases with false positives (i.e.,
facts that do not exist in the source) and false negatives (i.e., facts that should have
been extracted from the source) [42]. On the other hand, they are more flexible and
lightweight than parsers [37]. For preprocessed languages such as C there is another im-
portant difference between parser-based and lexical approaches. Parser-based extractors
see the source code after it has been preprocessed, whereas lexical extractors typically
operate on the un-preprocessed source.

Rigi’s C and Cobol extractors are parsers built with the help of a LR(1) parser gener-
ator, Yacc. As a result, the extractor is brittle [22] (i.e., it easily breaks if it encounters
anomalies such as syntax errors, dialects, and embedded languages [36]). This is a typical
problem when reverse engineering a software system with an external tool that comes
with its own parser [42]. In fact, we often receive email from users of Rigi that complain
that they cannot get its C parser to run through. Typically, the target code needs to
be “tweaked” with pre-processor directives that suppress or change C constructs. 8 The
former maintainer of the C parser relates his experiences as follows [32]:

“The Rigi C parser consists of more than 4000 lines of Lex, Yacc, and C++ code. [It’s]
code is much more complex and very hard to comprehend, in particular the grammar
written in Yacc. Although several researchers spent significant amounts of time on the
C parser over many years, it still has problems with some input.”

Based on our experiences with both parsers and scanners, we advocate a lightweight
approach to fact extractor construction that opportunistically collects facts about the
legacy system. Typically, lexical extractors are language neutral and reverse engineers
write ad-hoc patterns to extract information required for a particular task. This approach
is more flexible, results-driven and accommodates the iterative nature of the reverse
engineering process nicely. This approach has served us well, for example, in the reverse
engineering of the SQL/DS system, where facts were extracted from the system “with a
collection of Unix’s csh, awk, and sed scripts” [67].

Our experiences are supported by Jackson and Rinard, that say that while such
lightweight approaches are unsound, they “may provide a useful starting point for fur-
ther investigation. Unsound analyses are therefore often quite useful for engineers who
are faced with the task of understanding and maintaining legacy code” [15]. For example,
when migrating a software system to a different platform, it may be in a state such that
it cannot be compiled (e.g., because of missing or mismatched header files) [42]. In such
a case a parser-based approach will fail. In contrast, a lightweight approach is still able
to provide useful—even though incomplete—information such as a partial call graph.

8 For example, the tweaks to parse the sources of Mozilla are described at www.rigi.cs.uvic.ca/rigi/

mozilla/scripts.html.
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5.3. Data Representation and Storage

RSF is a lightweight exchange format that is characterized by the following properties.
It is a text-based format without nesting structures that is easy to read, manipulate, and
repair by humans with any text editor. An interesting feature is its composability: two
RSF files can be simply appended to form a new, syntactically valid one. Generally, flat
formats such as RSF are easier to compose than nested ones such as XML [7].

To extract information from a repository, there has to be a query mechanism. Querying
is an important enabling technology for reverse engineering because queried information
facilitates interrogation, browsing, and measurement [27]. Since RSF contains one tuple
per line and tuple values are separated by white spaces, standard Unix tools can be used
to process it. This is especially important since Rigi does not offer a dedicated query
language for RSF. For example, to find out about arc types (and the number of their
occurrences) the following commands can be piped:
cat file.rsf | cut -d " " -f1 | sort | uniq -c

The text-based approach also makes it easy to combing RSF with a version control system
and to do file differencing.

RSF is domain-neutral with respect to the stored information. However, the infor-
mation has to be structured according to its graph model. The constraints that can be
placed on the graph with the data model (cf. Section 3.2) are often not as expressive
as one might wish for. Furthermore, RSF is a flat format in the sense that there is no
scoping of entities. Since nodes are denoted by their name, some form of name mangling
needs to be done to avoid name clashes. Rigi’s C and C++ parsers concatenate names
of namespaces, classes, functions, and variables to produce a node name that is unique
for the entire software system. For example, a parameter argc of function main in file
myfile.c would be encoded as argc^main^myfile.c. Note that the constituents of the
mangled name can be easily extracted with Unix tools. For object-oriented languages, the
mangled names can become relatively long and somewhat difficult to read compared to
procedural languages. Other formats avoid name mangling by supporting name scoping
and/or assigning unique IDs to entities (e.g., GXL and FAMIX/MSE). There is a fine
line for exchange formats between expressiveness on the one hand and simplicity on the
other—and RSF may err on the side of simplicity.

In principle, RSF can represent any kind of information, ranging from fine-grained to
coarse-grained facts. However, since all information is kept in a single file and needs to
be processed batch-style, it is not practical to store find-grained information of a system
(i.e., the full syntax tree). RSF’s emphasis on readability combined with the need to
mangle names means that it is not storage efficient. For example, for the Azureus case
study [23] the system was represented with 32,677 nodes and edges, resulting in an RSF
file of 11 MByte. 9 In practice, Rigi has no problem to handle such file sizes because the
information can be read in and processed on a line-by-line basis.

An exchange format has to accommodate requirements of both tool users and tool
builders, which may be contradictory. For instance, a tool user might favor a format that
is human-readable, whereas a tool builder is primarily interested in a format that can

9 Typically, a large part of the file size is caused by long names that are the result of the name mangling.
Because these names have many similar substrings, they can be compressed very effectively. The RSF
file of the Azureus system is only 0.4 MByte after gzip compression.
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be parsed easily and efficiently. We believe that RSF is close to a design “sweet-spot” in
balancing diverse requirements of different stakeholders. This is supported by the many
tools that have chosen to use RSF.

5.4. Prototyping of New Functionality

A reverse engineering tool should accommodate the rapid development of new func-
tionality. This is not only of importance for researchers that want to develop proof-of-
concept prototypes to demonstrate the feasibility and effectiveness of a novel approach.
It is also important for reverse engineers that need a particular analysis or visualization
for a specific program comprehension task. In this context, Tilley states that “it has been
repeatedly shown that no matter how much designers and programmers try to anticipate
and provide for users’ needs, the effort will always fall short” [64]. He concludes that “a
successful reverse engineering environment should provide a mechanism through which
users can extend the system’s functionality.”

In Rigi, prototyping of new functionality is accomplished with RCL (cf. Section 3.4.1).
RCL enables, for example, to express graph transformations programmatically. Typi-
cally, such transformation are first manually performed in an exploratory and interactive
manner by a reverse engineer and then coded in RCL. For the reverse engineering of the
SQL/DS system, “it took two days to semiautomatically create a decomposition using
Rigi, but only minutes to automatically produce one via a prepared script. Either method
would be much faster and use the analyst’s time and effort more effectively than would
a manual process of reading program listings” [67]. Such a programmatic approach also
makes it possible to quickly reproduce steps in the workflow if the system changes.

The scripting capabilities have allowed other researchers to quickly customize Rigi to
implement their own (prototype) tools. The perhaps most extensive customization is
Bauhaus from the University of Stuttgart. The Bauhaus tool provides interactive (archi-
tectural) clusterings of software systems written in C [25]. Bauhaus uses Rigi to realize
the tool’s user interface, and to provide graph-based visualizations of the clustering re-
sults. Importantly, the user can interactively and intuitively select and combine analyses
and invoke them on a subset of the visualized graph. The main implementor of Bauhaus
relates his experiences with Rigi as follows:

“Rigi was extended in many directions to adapt it to our needs. The adaptations were
opportunistic; not everything what might have been useful could be worked into Rigi,
e.g., an undo mechanism would have been helpful. But all of our major requirements
were more or less easy to fulfill with Rigi” [25, p. 318].
Scripting also enables interoperability with other tools in terms of data and control

integration. Rigi can call out to other tools, and other tools can use Rigi as a service
provider (e.g., to perform computations for them). 10 For instance, the Shimba environ-
ment for analyzing systems based on both static an dynamic information was realized by
combining Rigi (for static graph-based information) and SCED (for sequence and state-
chart diagrams) [56]. Depending on user actions both tools pass control between them.
Dali also uses scripting to enable interoperability of Rigi with other tools [19].

10However, it is not possible to run Rigi without its GUI (so-called headless execution).

12



To summarize, scripting of (GUI) customizations with Tcl and RCL eases experimen-
tation and allows rapid prototyping of functionality. In a research environment, these
benefits outweigh potential drawbacks of scripting such as lack of a strong type system
and inferior maintainability.

5.5. Levels of Indirection

The Rigi system provides a number of mechanism that add flexibility and provide
abstractions over certain domain concepts. We refer to such mechanisms as levels of in-
direction. Figure 3 gives an overview of the major levels of indirections in the Rigi systems
and how they support tool interoperability and customizability as well as decouplings at
the architectural level.

Interoperability Customizability Architecture

RSF exchange format data integration graph instances decoupling of extractors

RSF data model data integration graph models decoupling of extractors

RCL scripting control integration graph-based analyses decoupling of graph model impl.

presentation integration GUI decoupling of widget sets

Fig. 3. Levels of indirections in Rigi

As discussed before, the exchange format provides a decoupling of the graph editor from
the extractors. This approach operates at the architectural level and is well known from
compiler construction, where intermediate representations are used to decouple the front-
end from the middle-end and/or the middle-end from the back-end. The exchange format
also provides data integration with other tools. Lastly, the exchange format supports
customization of the data that Rigi is dealing with because it allows to encode an open
ended number of concrete graphs. This is perhaps an obvious feature, but because of its
obviousness this level of indirection is easily missed.

The data model of the exchange format provides another level of indirection. It enables
domain-retargetability by customizing the node and arc types (and their attributes).
Interoperability is enhanced because data is now typed and entities have semantics. For
example, this approach makes it possible to have several fact extractors for the same
programming language—but with different trade-offs such as speed or brittleness—that
all adhere to the same data model and hence can be transparently exchanged.

RCL scripting enables control and presentation integration with other tools. For exam-
ple, Shimba leverages this level of indirection to integrate Rigi with another tool, SCED
(cf. Section 5.4). Both tools have their own GUIs, but they send messages to each other to
synchronize operations, realizing control integration. In contrast to control integration,
presentation integration is only practical if the integrated tools use the same toolkit (or
a bridge is used that translates from one toolkit to the other). For example, to provide
additional analyses and visualizations, Tilley has integrated a spreadsheet (Oleo/tk) and
barcharts (The BLT Toolkit) into Rigi [64, p. 61]. Since both tools are based on Tcl/Tk,
they could be integrated seamlessly at the GUI-level. RCL also enables customizability
of Rigi’s functionality in terms of domain-specific analyses that programmatically ma-
nipulate the graph model (cf. Section 5.4) as well as personalization to Rigi’s GUI (cf.
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Section 3.4.1). At the architectural level, RCL also decouples the graph editor from the
underlying implementation of the graph model. In principle the current C++ implemen-
tation could be replaced with one that uses different algorithms and data structures, or
uses a different implementation language.

6. Conclusions

This paper has discussed the Rigi reverse engineering environment and its research
contributions. Rigi has the following key features. It offers an exchange format with
a graph-based data model; fact extractors for C++, C and Cobol; and an interactive
graph editor. Rigi’s architecture decouples the fact extractors from the graph editor (via
the exchange format). The exchange format allows to define different data models, and
the editor’s scripting layer provides end-user programmability. Rigi had a significant
impact on research in reverse engineering and program comprehension. It has been used
to analyze many (industrial) systems, and has enabled the prototyping of novel reverse
engineering tools. Rigi’s exchange format is supported by many tools and has inspired
other exchange formats.

We have also discussed our tool-building experiences with Rigi, identifying benefits
and drawbacks of design decisions that we made for fact extractors, exchange formats,
and prototyping of new functionality for tool interoperability and customizability. Gen-
erally, we advocate lightweight techniques in the construction of reverse engineering tools
because this approach reflects the underlying characteristics of the reverse engineering
process (which is highly iterative and based on trial-and-error).
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