The RTLinux Manifesto

Victor Yodaiken

Department of Computer Science
New Mexico Institute of Technology

Socorro NM 87801
yodaiken@cs.nmt.edu
http://www.rtlinux.org

ABSTRACT

RTLinux is the hard realtime variant of Linux
that makes it possible to control robots, data
acquisition systems, manufacturing plants, and
other time-sensitive instruments and machines.

1 Introduction

Rea-Time Linux (RTLinux) is a version of
Linux that provides hard real time capability. A
NASA computer running RTLinux flew into the
eyeof Hurricane Georgesto collect data] 14]; the
Jm Henson Creature Shop in Hollywood is de-
veloping a RTLinux application to control “an-
imatronic” things used in movies, RTLinux has
been used for video editors, PBXs, robot con-
trollers, machinetools, and even to stop and start
hearts in medical experimentst

RTLinux provides the capability of running
specia realtime tasks and interrupt handlers on
the same machine as standard Linux. These
tasks and handlers execute when they need to
execute no matter what Linux is doing. The
worst case time between the moment a hardware
interrupt is detected by the processor and the

IRTLinux is released, as is, with no warranty of any
kind. Use at your own risk.

moment an interrupt handler starts to execute is
under 15 microseconds on RTLinux running on
a generic x86. A RTLinux periodic task runs
within 35 microseconds of its scheduled time on
the same hardware. These times are hardware
limited, and as hardware improves RTLinux will
also improve. Standard Linux takes up to 600
microseconds to start a handler and can easily
be more than 20 milliseconds (20,000 microsec-
onds) late for a periodic task?. As an unfair
but fun comparison, an optimistic study of MS-
Windows/NT didn’t even bother to try to mea-
sure times under a millisecond and till found
that NT numbers were essentially the same as
the standard Linux numbers, while Windows/98
was up to 140 millisecondstoo |late on a periodic
task [7]. To be fair, there are now Window-NT
versions of the RTLinux method and these seem
to get low level timings that are sometimes al-
most as good and generally not more than two
times worse than RTLinux[6].

What makes RTLinux useful isthat it extends
the standard UNIX programming environment
to realtime problems. RTLinux realtime inter-
rupt handlers and tasks can be connected to or-
dinary Linux processes — either via a devicein-
terface where Linux processes read/write data,
or via shared memory. A standard Linux pro-

2A processusing sched_set sched

cess, perhaps executing a shell script or a Perl
program, can collect data from a realtime han-
dler or task, process and log it and display the
results on X-Windows. Using Perl scripts to to
control a realtime device from an ordinary PC
may seem ridiculous, but it works surprisingly
well.

The rest of this paper is in five parts. Sec-
tion 2 is an introduction to realtime comput-
ing. Section 3 is an explanation of why real-
time computing is so hard to integrate with non-
realtime computing and why obvious methods —
like making the standard kernel directly support
realtime — are doomed to failure. Section 4 ex-
plains how RTLinux works and section 5 shows
how to write applications. The last section cov-
ers future directions and has some random ac-
knowledgements.

2 An introduction to realtime
programming.

“Realtime” is is an over-used term that can be
used to mean “right away” or “fast” asin “re-
altime stock quotes’. RTLinux is addressed at
hard realtime systems: those with timing dead-
lines that cannot be missed. The traditional
uses for these systems are to control or mon-
itor some physical system or device such as a
motor, an assembly line, a telescope, or an in-
strument. Telecommunications and networking
devices often aso need realtime control. Con-
sider the difference between the response time
needed for text editor, a video display, and a
program controlling the shutdown sequence of
aliquid fuel rocket.

e The text editor should respond quickly to
user commands, but if it takes a half a sec-
ond to update adisplay every now and then,
few users will notice.

e Video displays should almost always keep
up with the frame rate. A haf a sec-
ond freeze will be noticed and a couple of
freezes in a minute will make the system
unpleasant. If the program starts dropping
frames, it can sometimes use an algorithm
to hide the missing frames by interpolation.

e The rocket shutdown sequence must meet
deadlines or the rocket may explode. A sin-
gle freeze of a half a second at the wrong
moment might have a spectacular and ter-
minal result.

So the text editor needs to be fast and respon-
sive, the video display needs to usually meet
timing deadlines and the rocket control needs
to be able to guar antee response times. In the
CS literature, the video display would be called
a soft realtime system, and the rocket control
would be called a hard realtime system [13, 12].

Most hard realtime applications have failure
modes that are not as spectacular as those of lig-
uid fuel rockets, but they need guaranteed timing
nonetheless. If you are controlling a servo mo-
tor through the parallel port of a cheap PC[§],
each timing jitter of 10 microseconds causes an
error of one degree. If you are collecting data
from ascientific instrument or video frame grab-
ber, a missed deadline may result in missed data
or even a confused device. For high speed net-
works, adelay of a couple of microseconds may
drop a packet and cause a major performance
loss as the system times out and requests a re-
transmit. The distinctive property of hard real
time systems is this requirement for guaranteed
timing — an average time response of 5 millisec-
onds on our rocket controller will not make up
for asingle worst case of 100 milliseconds.

Hard realtime systems cannot use av-
erage case performance to compen-
sate for worst case performance.

Suppose that we have a board that samples
analog lines and produces an 8 bit result every
100 microseconds. Most boards like this are de-
signed with hardware buffers right now so that
they can compensate for the non-realtime behav-
ior of Microsoft Windowsand NT. Theanalog to
digital device generates samples and puts them
in the buffer. If the buffer is deep enough, say
with room for 512 samples, then we won't lose
any data if we read the buffer at least once ev-
ery 50 milliseconds. There are three problems
with this scenario. Thefirst problem isthat even
though 50 millisecondsisalong time, it is easy
to missthe deadlinein even amoderately loaded
system. Ordinary Linux can’'t keep up, even us-
ing the so-called “realtime” POSIX extensions.
A second problem is that if the hardware has
to cope with software timing uncertainties, the
hardware becomes more complex and costly. Fi-
nally, if we need to control adevice—to react to
data “in real time’ — then 50 milliseconds may
be too long and the hardware buffers may cause
instability asthey introduce delaysin the control
loop.

RTLinux provides support for hard realtime
programs and will, in the future, offer sup-
port for some kinds of quality of soft realtime.
RTLinux leaves the problem of “fast” applica
tions to standard Linux. Making non-realtime
applications run fast is incredibly complex. It
turns out that much of what you can do to
speed up the non-realtime performance of appli-
cations introduces unpredictable delays that are
unhealthy for realtime. The obvious example is
paging of virtual memory. If 99.99% of program
memory references are in the page cache, and if
a hit takes one time unit and a miss takes 500
time units, then over asufficiently large time pe-
riod the average accesstime is 1.05 time units—
virtual memory is practically free. On average,
virtual memory isamajor performance win, be-
cause processes will be able to run as if there

was a much larger amount of memory available
— with close to zero cost. On the other hand,
arealtime task that missesitsfirst 10 pages will
take 5000 time units to do what could otherwise
be done in 10 time units and this worst case per-
formance is what matters.

Because of these problems, back in the far
past realtime systems were hand made, simple
contraptions designed by tough, rugged, engi-
neering types who scorned compilers and vir-
tual memory and thought that al phanumeric dis-
plays were unnecessary luxuries. In these sys-
tems, optimizing worst case performance was
quite straightforward. In fact, many redtime
systems still are designed as loops that execute
on a bare machine. The program loops through
alist of smple tasks and the longest time before
atask will run is the sum of the execution times
of al the taskson thelist.

count er =500;
whil e(1){

I f(data_on_sensor()){
read_sensor();
comput e_out put () ;
counter--;

}

i f(!counter){

out put ();

count er =500;

}

The problem with this design is that is does
not scale. As redtime applications get more
complex, they need more complex support. If
you want to have arealtime control program for
an aircraft engine diagnostic system that moni-
tors hundreds of sensors and also needs to dis-
play graphical data, interact with a database,
connect to a network and even run a web inter-
face, then writing a control loop system s out of

SWell before Dave Miller was born.

the question. The problem then becomes one
of keeping the fast, predictable operation that
you can get from control loop on a bare ma-
chine, while running in a much more sophisti-
cated software environment. One solution isto
add realtime support to a non-realtime kernel,
but that’s not as simple as it may sound.

3 You can put racing stripes
on a bulldozer, but it won’t
go any faster.

Before describing how RTLinux works, it is
worthwhile to explain why what seems like a
more straightforward approach does not work.
You could just take an operating system like
Linux and stick realtime support into the kernel.
For example, you could alow for “reatime”
processes with locked memory (so there were
no delays while virtual memory was swapped
in) and a special scheduler to always run these
processes first and in a predictable order. This
approach isexemplified in the part of the POSIX
1003.13[10] standard called “ Multi-Purpose Re-
altime System Profile” (PSE54). RTLinux does
not try to meet this standard, but standard
Linux does support PSE54 compliant m ock
(memory lock) and sched_set sched (spe-
cial schedule) system calls and POSIX RT sig-
nals.

To see how well the POSIX PSE54 approach
worksunder standard Linux, we can writeasim-
ple program that asks to be specially scheduled
and then callsudel ay to suspend itself for, say,
50 milliseconds. On a Pentium, it is possible
to read the processor cycle counter before and
after this delay to get reasonably precise tim-
ing. We can set up a loop and look for aver-
age and worst case delay. On an idle standard
Linux system, the task is remarkably precise:

the time for 1000 trips through the loop is rock
solid and the worst case deviation from aver-
age is about 100 microseconds in my test on a
333MHz dual PIl system. But when I/O activity
begins, theworst casedeviation rapidly risestoa
half amillisecond and if one starts up Netscape,
the worst case deviation exceeds a couple of
milliseconds. A simple test program that
does write(1, buff, Bl GNUMBER) causes
the “realtime” task to experience delays of over
18 milliseconds — even though the average re-
mains unchanged. Ordinary standard Linux pro-
cesses, of course, do alot worse. So we could
not reliably use the data acquisition card dis-
cussed above if al we had to work with were
standard Linux processes and POSIX PSE54.
For comparison, the same test on RTLinux gives
worst case difference between minimum and
maximum (not between max and average) of un-
der 25 microseconds— amost 1000 times better.
Running the RTLinux task at 500 microsecond
intervals gives identical precision, and Linux
continues to run quite well. Running the POSI X
“realtime” process at 500 microsecond intervals
stops Linux completely.

No other genera purpose OS does any bet-
ter than standard Linux in mixing RT with stan-
dard services — all for the same reasons. The
most obvious problem is that the most useful
design rule for general purpose operating sys-
temsis: optimize the common case. Thus, Linux
SMP locks are exceptionally fast when there is
no contention — the common case — and pay
a significant price when there is contention. To
use another design would slow down general op-
eration of the system in order to optimize some-
thing that should happen only rarely. Similarly,
standard Linux interrupt handling is realy fast
for ageneral purpose operating system. In some
of our measurements, standard Linux averages
2 microseconds to get to the interrupt handler
on reasonably standard x86 PCs. That’'simpres-

siveand it iscritical for making users of graphi-
cal user interfaces and interactive networks feel
happy. Worst case behavior is not so impressive
and some interrupts are delayed by hundreds of
microseconds. The problem is that it is not so
easy to figure out how to decrease worst case
without increasing average case.

If you look at Linux code long enough, you
will see many more fundamental contradictions
with realtime requirements. A few examples
should make the case.

e “Coarse grained” synchronization means
that there are long intervals when one task
has exclusive use of some data. This
will delay the execution of a realtime task
that needs the same data structures. “Fine
grained” synchronization, on the other
hand, will cause the system to spend a lot
of time uselessly locking and unlocking
data structures, slowing down all system
tasks. Linux uses coarse grained schedul-
ing around some of its core data structures
because it would be stupid to slow down
the whole system to reduce worst case.

e Linux will sometimes give even the most
unimportant and nicest task a time-slice,
even when a more important task is
runnable. It would not be smart to never
run abackground process that cleans up log
files, even if a higher priority computation
iswilling to use up al available processor
time. But in a reatime system, the high-
est priority task should not wait for alower
priority task. In arealtime system, you can-
not assume that low priority tasks will ever
make progress — but in a general purpose
operating system we do assume that low
priority tasks will progress.

e Linux will reorder requests from tasks to
make more efficient use of the hardware.

For example, disk block reads from the
lowest priority processes may take prece-
dence over read requests from the highest
priority process so to minimize disk head
movement or to improve chances of error
recovery.

e Linux will “batch” operations to make
more efficient use of the hardware. For
example, instead of freeing one page at a
time when memory gets tight, Linux will
run through the list of pages clearing out
as many as possible — delaying execu-
tion of all processes. It would be counter-
productive for Linux to run the swapper
each time a page was needed, but the worst
case certainly gets alot worse.

e Linux will not preempt the execution of
eventhelowest priority tasks during system
calls. While the RC5 processis in the mid-
dieof “fork”, amessage that arrivesfor the
video display processwill sit on the queue.
To get around this problem, Linux would
have to put in preemption points that would
slow down al system calls.

e Linux will make high priority taskswait for
low priority tasks to release resources. |If
the RC5 program allocates the last network
buffer and the robot arm controller needs
to send a message to stop the robot arm,
the robot arm controller will just have to
wait until some other process frees a net-
work buffer.

You could argue that since there are operating
systems mixing realtime and standard services
in the same kernel, the above must be wrong.
Those systems work, and are substantial techni-
cal achievements, but they are complicated and
quite slow. You can have deterministic worst
case behavior time on Solaris RT, but the worst

caseisreally worse than you might bewilling to
tolerate. In the academic realtime literature, it is
often stated that realtime does not require speed,
it requires determinism (fixed worst case tim-
ings). That'strue asfar asit goes, but you can’'t
do realtime video editing if your worst case be-
havior only allows for aframe rate of one frame
every 2 seconds.

Since realtime and general purpose operating
systems have contradictory design goals, it is
not surprising that what is smart in one systemis
deadly in another. If we attempt to satisfy both
design goalsin the same system, we end up with
something that does neither very well.

4 TheRTLInux solution

About 20 years ago, researchers at Bell Labs
built an experimental operating system called
MERTI[9]. This operating system was intended
to run both realtime and general purpose appli-
cations. But instead of trying to make one op-
erating system that could support both, MERTS
designers tried to make a system in which a
realtime operating system and a genera pur-
pose (time-sharing) operating system worked to-
gether. The designers wrote:

. the availability of a sophisticated
time-sharing system in the same ma-
chine as the realtime operating sys-
tem provides powerful toolswhich can
be exploited in designing the man-
machineinterfaceto thereal-time pro-
Cesses.

That is, MERT's designers claimed that by
decoupling the realtime OS from the non-
realtime OS, they were able to alow applica-
tion developers to use the services of the non-
realtime OS*

4The MERT paper appeared in a famous 1978 issue
of the Bell Systems Technical Journal. This issue aso

RTLinux works by treating the Linux OS ker-
nel as a task executing under a small reatime
operating system. In fact, Linux is the idle
task for the realtime operating system, execut-
ing only when there are no realtime tasksto run.
TheLinux task can never block interruptsor pre-
vent itself from being preempted. The techni-
cal key to all thisis a software emulation of in-
terrupt control hardware. When Linux tells the
hardware to disable interrupts, the realtime sys-
tem interceptsthe request, recordsit, and returns
to Linux. Linux isnot ever allowedto really dis-
able hardware interrupts. No matter what state
Linux isin, it cannot add latency to the realtime
system interrupt response time. When an inter-
rupt arrives, the RTLinux kernel intercepts the
interrupt and and decides what to do. If there
is a realtime handler for the interrupt, the han-
dler isinvoked. If there is no realtime handler,
or if the handler indicates that it wants to share
the interrupt with Linux, the interrupt is marked
pending. If Linux has asked that interrupts be
enabled any pending interrupts are emulated and
the Linux handlers are invoked — with hardware
interrupts re-enabled.

No matter what Linux does, whether Linux
isrunning in kernel mode or running a user pro-
cess, whether Linux isdisabling interruptsor en-
abling interrupts, whether Linux isinthe middie
of a spin-lock or not, the realtime system is a-
ways able to respond to the interrupt.

RTLinux decouples the mechanisms of
the realtime kernel from the mecha-
nisms of the general purpose kernel so
that each can be optimized indepen-
dently and so that the RT kernel can
be kept small and simple.

carried articles reporting on porting C code to multiple
machines (a novel idea at the time), a new text process-
ing system called troff, the programmers workbench, and
the original papers on UNIX and C. You should read it or
reread it.

RTLinux is designed so that the RT kernel
never has to wait for the Linux side to release
any resources. The RT kernel does not request
memory, share spin-locks, or synchronize on
any data structures — except in tightly con-
trolled situations. For example, the communica-
tion links used to move data between RT tasks
and Linux processes are non-blocking on the RT
side: there is never a case where the RT task
walits to queue or dequeue data. The near fail-
ure of the Mars Lander was caused by an in-
teraction between a realtime task and an oper-
ating system service that assumed it was ok to
de-schedule a process. One VxWorks task ac-
quired a semaphore and a high priority task was
then put to sleep when it tried to write to a pipe
protected by that semaphore. RTLinux does not
have any such hidden points of synchronization.

Of course, it doesn’t do much good to have
a redtime system that can't communicate at
al with the non-realtime system, so RTLinux
provides both shared memory (using a crude
method right now) and also a device interface
that lets Linux processes read and write to real-
time tasks.

One of the key design principles of RTLinux
is that the more that is done in Linux — and
the less that needs to be done on the RT side —
the better. Linux takes care of system and de-
vice initialization and of any blocking dynamic
resource allocation. Device initialization can be
left to Linux. There cannot be any realtime con-
straints at boot time, so there is no need for the
RT system to be involved. Blocking dynamic
resource allocation is left to Linux. Any thread
of execution that is willing to be blocked when
there are no available resources cannot have
hard realtime constraints. For example, thereis
no way for aRT task to call malloc or kmalloc or
any other memory allocator. If the task does not
statically alocate memory, it does not have ac-
cess to that memory. Finally, RTLinux relieson

the Linux loadable kernel module mechanism to
install components of the RT system and to keep
the RT system modular and extensible. Loading
a RT module is not a realtime operation and it
can also be safely left to Linux. The job of the
RT kernel is to provide direct access to the raw
hardware for realtime tasks so that they can have
minimal latency and maximal processing when
they need it. Anything else just getsin the way.

So RTLinux is a variation, a better variation
in my humble opinion, of the basic idea found
in MERT. Around the same time that we de-
veloped and released RTLinux, Greg Bollella
[4, 3] was working on putting a realtime ker-
nel on the same machine as the general purpose
IBM MicroKernel and a little later two compa-
nies produced systems in which a realtime ker-
nel shares the machine with WindowsNT [2, 5].
All of these systems use some variation on the
technique of putting a virtual machine layer be-
tween the general purpose OS and the interrupt
hardware. The low level times measured by the
Radisys authors [6] and by Bollella are similar
to the RTLinux times: reflecting mostly the lim-
itations of PC motherboard design. It's irritat-
ing to observe an out-of-order execution, deeply
pipelined, highly cached, 400MHz processor,
turn into an expensive space heater as it negoti-
atesa8hit I1SA buspathtoitslegacy original-PC
system timer.

5 Using RTLinux

RTLinux is very much module oriented. To use
RTLinux, you load a modules that implement
whatever RT capabilities you need. Two of the
core modules are the scheduler and the module
that implements RT-fifos. If the services pro-
vided by these modules don’t meet the require-
ments of the application, they can be replaced
by other modules. For example, there are two

I nterrupt control hardware

{ - Real-TimeKerne ' 4

Real-Time
tasks

Linux

Real

-Time Fifos

Y

Y

Linux processes

Block level design of RTLinux

Figure 1. Flow of data and control

aternative scheduling modules — a “earliest
deadlinefirst” scheduler implemented by |smael
Rippol[11] and a rate-monotonic scheduler im-
plemented by Oleg Subbotin (see the rtlinux.org
web page)®. The basic scheduler simply runs
the highest priority ready RT task until that task
suspends itself or until ahigher priority task be-
comes ready.

The original RTLinux scheduler (written by
Michael Barabanov) used the timer in “one
shot” mode so that it could easily handle a col-
lection of tasks with periods that had a small
common divisor. For example, if one task must
run every 331 time units and the other runs ev-
ery 1027 time units, there is no good choice for

5The academic CS literature is deeply concerned with
the right way to schedule RT tasks. My theory is that
nobody knows yet, and that the OS should not make the
choice.

a timer period. In one-shot mode, the clock
would be set first to generate an interrupt af-
ter 331 time units and then reprogrammed af-
ter the interrupt to generate a second interrupt in
another 691 time units (minus the time needed
to reprogram the clock). The price we pay is
that we reprogram the clock on every interrupt.
For x86 generic motherboards, reprogramming
the clock is relatively slow. It turns out, how-
ever, that many applications don’t need the gen-
erality of a one-shot timer and can avoid the ex-
pense of reprogramming. Professor Paolo Man-
tegazza of the Aerospace Engineering Depart-
ment in Politecnico di Milano wrote a scheduler
that demonstrated the utility of periodic mode
and encouraged us to put it into the standard
scheduler®. The current RTLinux scheduler of-

Professor Mantegazza is also responsible for debug-
ging floating point support in RTLinux.

fers both periodic and “one shot” modes. On
SMP systems the problem gets simpler because
there is an on-processor high frequency timer
chip that isavailable to the RTL system.

51 TheAPI

The standard API for Versionl (based on the 2.0
Linux kernel) isasfollows.

ertl _request_irg and
rtl _free_ irq. These activate and
deactivate interrupt handlers.

e rt_get tinereturnsthetimein“ticks’.

e rt_task del et e destroys a task and
frees its resources.

ertl _task_init sets up, but does not
schedule atask.

e rt_task _make_periodic asks the
periodic scheduler to the run task at afixed
period (given as a parameter).

e rt _task suspend takesthetask off the
run queue.

e rt_task wait yields the processor un-
til the next time dlice for this task.

e rt_task wakeup wakes up a sus
pended task.

e rt_use_f p alowsthetask to usefloating
point operations.

e rtf _creat e createsafifo.

e rtf_create_handl er attaches a rou-
tine that runs under the Linux kernel to
a fifo so that user processes can be made
runnable when there is data available.

e rtf _destroy freesafifo.

e rtf _get isthe non-blocking read opera-
tion for realtime tasks.

e rtf _put isthenon-blocking write opera-
tion for realtime tasks.

e rtf _resize changesthe size of datain
thefifo.

e rtl_set periodi c_node optimizes
the system for running a collection of tasks
that share a common fundamental period.

e rtl _set oneshot node optimizes
the system for cases where periodic mode
is not appropriate.

In the Version2 (based on Linux 2.2) many of
these calls have an alternate form with an addi-
tional parameter for cpu identifier. On a SMP
system, atask is associated with aparticular cpu
and is only scheduled by the scheduler on that
cpu. Also, on SMP systems, some interrupts are
local and need to be given handlers per/cpu.

5.2 Examples
521 Squares

Figure 2 shows how a program to produce a
sguare wave on the parallel port output would
be written.

This program would be compiled as a mod-
ule, and i nsnod is used to start it. When
the module starts, it runsinitialization code that
constructs a single task using rt _t ask.i ni t
and then asks the realtime scheduler to run the
task every 450 ticks of the clock. On a SMP
x86 system, we have a more sophisticated timer
that used the processor clock, but on the stan-
dard motherboardswe are still stuck with the an-
tique 18353 — a vestige of the original IBM PC.
In spite of this embarrassment, thistask is never
more than about 40 microseconds late or early,

/* Module to toggle output on the parallel port */
RT_TASK ny_task
#def i ne STACK S| ZE 3000

voi d code for_rtl _task(unsigned int pin) {
static unsigned char bits = 0;
whil e(1){
if(bits)bits = 0;
else bits = (1<< pin);
/* wite on the parallel port */
outb(bits, LPT_PORT);

/* wait till next period */
rt _task wait();
}

}

int init_nodul e(voi d)

{

RTIME now = rt_get tinme();
/* Initialize a task with code code for _rtl _task
pin 3 ,stack size STACK SIZE and priority 1 */
rtl _task init(&my_task, code for rtl _task, 3, STACK SIZE, 1);
/* run every 450 8253/4 ticks
(about 50 m | liseconds)*/
rtl _task _make_ periodi c(&mytask, now, 450);
return O;

Figure 2. Square wave RT program

on anything from an old 386 to a 500Mhz PIl|,
no matter what load is running in the system.

5.2.2 Coallecting data

To make something like the analog/digital con-
verter discussed above work, we would write
two piecesof code. Thefirst would bearealtime
module that would poll the device and then put
datainto areatimefifo. The other piece of code
would read the fifo and would run as a Linux
user process. The mgjor change from the paral-
lel port toggling example would be in the main
loop of the function code_for _rtl _task
which might be written something like this:

whi | e(1){
read data from hardware;
rtf_put (FI FO_ID, data, si ze);
/[* wait till next period */
rt_task wait();

}

On the Linux side, the realtime fifos are
devices: rtfO,rtfl1 The Linux side
task could be aone line shell script:

cat /dev/rtf0 > logfile

5.2.3 Interrupt handlers

Instead of using the calls to the scheduler mod-
ue-rtl taskwait,rtl _task.init,and
rtl _task_make_peri odi ¢ —we could sim-
ply attach our function to atimer. Using similar
task code, we could change the initializing code
asfollows.

i nt
{
rtl_request _irq(CMOS_CLOCK, \
handl er _ptr);
I NI T_CMOS_CLOCK(FI FTYNS) ;

i ni t_nodul e(voi d)

return O;

}

Our cleanup code for the module would call
rtl free.irgq. The code for the handler
would look like the code for task, except instead
of caling rt 1 _t ask_wai t it would reset the
CMOS clock to allow further interrupts.

6 What next and acknowledg-
ments

A 22 verson of RTLinux was released in
January 1999 with some missing features, but
with improved support of SMP. A fully func-
tiona version will, 1 hope, be released in
March. Ports are underway to Alpha and to
PowerPC. SMP with larger numbers of proces-
sors is a key goal over the next few months.
We are aso rewriting the scheduler to sup-
port the minima POSIX RT standard (not
from the PSE54 standard mentioned earlier) and
are looking at how to support QOS (quality
of service) assurances for soft realtime tasks
[12]. Other developments are several commer-
cial packages for RTLinux under development.
See http://ww. rtlinux.comfor com-
mercia links. Linus Torvalds once said that
the RTLinux core would becomeintegrated with
the standard kernel in 2.3, but the availability of
pre-patched kernels makes this a less pressing
issue. News and code can always be found at
http://ww.rtlinux.org.

At New Mexico Tech, RTLinux develop-
ment has been funded mostly by USENIX
(htt p: // www. useni x. or g). There is
(GPL) RTLinux development now being car-
ried out on a commercia basis and this
is being financed by industrial contracts.
RTLinux was first implemented by Michael
“FZ” Barabanov[l]. As with all open-source

projects, RTLinux is a collaborative effort.
Thanksto the Linux kernel developersfor such a
useful idle task and thanks to the RTLinux users
for being so enthusiastic and brave and for con-
tributing code, ideas, and interesting stories.

References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

Michael Barabanov and Victor Yodaiken.
Real-time linux. Linux journal, February
1997.

Nick Vasilatos Bill Carpenter, Mark Ro-
man and Myron Zimmerman. Rtx real-
time subsystem for windows nt. In Win-
dows NT System Engineering Workshop.
USENIX, August 1997.

Greg Bollella. Sotted Priorities: Support-
ing Real-Time Computing Within General-
Purpose Operating Systems. PhD thesis,
University of North Carolina, 1997.

Greg Bollella and Kevein Jeffay. Sup-
porting co-resident operating systems. In
Proceedings of the Real-Time Technology
and Applications Symposium, pages 4-14,
May 1995.

Radisys Corporation. Intime kernel.
Technical report, Radisys Corporation,
http://ww. radi sys. com1997.

Radisys Corporation. Intime in-
terrupt latency report. Techni-
ca report, Radisys Corporation,

http://ww. radi sys. com1998.

James P. Held Erik Cota-Robles. A com-
parison on windows driver model latency
performancea on windows nt and windows
98. In Proceedings of the Third Symposium

[8]

[9]

[10]

[11]

[12]

[13]

[14]

on Operating Systems Design and Im-
plementation (OSDI199), pages 159-172,
Boston, MA, Feb 1998. USENIX.

Bernhard Kuhn. Servomotorensteuerung
mit rt-linux. Linux Magazine (germany),
December 1998.

H. Lycklamaand D. L. Bayer. The MERT
operating system. Bell System Technical
Journal, 57(6):2049-2086, 1978.

The Portable Application Standards Com-
mittee of the IEEE Computer Society.
P1003.13 draft standard for information
technology — standardized application en-
vironment profile — posix reatime ap-
plication support (aep). Technical report,
|EEE, 1998.

Ismael Ripoll. Earliest deadline
first scheduler. Technical report,
University of Vaencia (Span),

http://berni a. di sca. upv. es/
1998.

John A. Stankovic. Strategic directionsin
real-time and embedded systems. ACM
Computing Surveys, 28(4):751-763, Dec
1996.

John A. Stankovic and Krithi Ramam-
ritham. Hard Real-Time Systems, volume
819 of IEEE Tutorials. |EEE, 1988.

C. Wayne Wright and Edward J. Walsh.
Hurricane hunting. Linux Journal, (58),
Feb 1999.

