
© 1993-2007 KIPR

1

Botball 2007

Educator’s Workshop

v1.6 2007.2.20

© 1993-2007 KIPR 2

NASA Robotics Alliance Project
National Diamond Circle Sponsor

Hawaii Convention Center
National In-Kind Sponsor

SolidWorks
National In-Kind Sponsor

National Botball Sponsors

© 1993-2007 KIPR 3

Naval Research Laboratory
Regional Platinum Sponsor - Greater DC Region

Hawaii Department of Education
Regional Platinum - Hawaii Region

NASA Goddard Space Flight Center
Regional Gold Sponsor - Greater DC Region

Regional Botball Sponsors

© 1993-2007 KIPR 4

KISS Institute thanks the following venue sponsors
who support Botball by donating workshop and/or

tournament venues free of charge:

• University of Arkansas, Little Rock - Arkansas Region
• University of North Florida - Florida Region
• Mercer University - Georgia Region
• Southern Illinois University Edwardsville - Greater St. Louis Region
• University of Maryland, College Park - Greater DC Region
• Hawaii Convention Center - Hawaii Region
• Rose-Hulman Institute of Technology - Midwest Region
• University of Massachusetts Lowell - New England Region
• Polytechnic University - New York/New Jersey Region
• University of Oklahoma - Oklahoma Region
• University of Pittsburgh - Pennsylvania Region
• CMU Qatar Campus - Qatar Region
• University of San Diego - Southern California Region
• University of Houston - CORE - Texas Region

© 1993-2007 KIPR 5

Botball 2007
©1993-2007 KISS Institute for Practical Robotics

Written by:

David P. Miller
and

Charles Winton

with significant contributions from:
the staff of KIPR and the Botball Instructors Summit participants

© 1993-2007 KIPR 6

Tutorial Schedule:
• Day 1:

– What is a robot?
– What is Botball?
– Design Projects
– C programming language
– IC Simulator

• simple programming
• variables and data
• functions and libraries
• IC Robot Simulator
• motor functions
• flow of control, while
• sensors
• differential steering

– Botball electronics
– Demobot construction

• Day 2:
– The XBC v3

• Hardware
• Firmware Testing sensors & motors

– Robot challenges
– Botball functions
– XBC Color Vision
– Color Tracking
– Robot challenges
– Project management

• Day 2, 4pm:
– Game Review

• Robot Documentation
• Building Rules
• Game Challenge

– Checkout and wrap up

© 1993-2007 KIPR 7

What is a Robot?
Wikipedia Definition:
• A robot is an electro-mechanical or bio-mechanical device or

group of devices that can perform autonomous or
preprogrammed tasks.

Computing Dictionary Definition:
• A mechanical device for performing a task which might

otherwise be done by a human, e.g. spraying paint on cars.
Synonyms:
• automaton, golem

–see also: android, humanoid, mechanical man, mechanism

© 1993-2007 KIPR 8

Levels of Autonomy
• Remote control

– Battle bots
• Teleoperation

– Robot sensor feedback, operator uses a joystick
or other device to instruct the control sequence

• Tele-presence control
– Exoskeleton or VR control

(operator mapped to robot)
• Semi-autonomous

– Operator provides high-level goals and
robot on its own seeks to accomplish the goals

• Autonomous
– Robot on its own with multiple computational

processes in parallel; emergent behaviors

© 1993-2007 KIPR 9

Basic robot elements

© 1993-2007 KIPR 10

People Robots

Bones Mechanical Structure
Muscles Effectors
Senses Sensors
Digestion/Respiration Power
Brain Computer
Knowledge Program

Human vs. Robot Subsystems

© 1993-2007 KIPR 11

Structure

Robot Structure
– Carries all the forces exerted

by the robot and the
environment

– Joints in structure normally
have effectors attached

– Holds sensors in position

© 1993-2007 KIPR 12

Effectors

• Used to change the state of the robot
• Used to change the state of the world
• Examples:

– Motors, thrusters, arms, or legs

– Voice synthesizers, buzzers, and lights

– Serial lines, com ports, radios

© 1993-2007 KIPR 13

Sensors

• Proprioceptive sensors
– Report on the current

state of the agent
– e.g. encoders, gyros,

low-voltage sensors

• External sensors
– Report on the current

state of the world
– light sensors, range

sensors, touch
sensors,...

© 1993-2007 KIPR 14

Power

• The power source
– Batteries, solar panels

– Springs, hydraulics, pneumatics

– Nuclear reactor

• Power distribution
– Wires

– Busses

• Power management
– Regulators

– Converters

© 1993-2007 KIPR 15

Computation
• Used to interpret sensor values;

perception

• Used to generate proper effector
commands

• Used to project effects and plan
actions

• Must be low power

• Must be interfaced to proper
sensor and motor circuitry

© 1993-2007 KIPR 16

Information

• Internal Information
– How to interpret sensor

values
– How to generate effector

commands
– Internal state & history

• External Information
– World, user & predictive

models

• Program
– Determines robot actions
– Forms robot plans
– Debugging - introspection

© 1993-2007 KIPR 17

Botball Robotics

© 1993-2007 KIPR 18

Botball Robots Are Real Robots

• Structure:

• Power: rechargeable
batteries

• Effectors:
– Gear head motors
– Direct Drive Motors
– Servo motors

© 1993-2007 KIPR 19

Botball Robots are Real Robots

• Sensors: 28 sensors of
8 different types

• Computation: 2
microcontrollers

• Information: C
programs written by
the students

© 1993-2007 KIPR 20

BOTBALL = roBOT + BALL

© 1993-2007 KIPR 21

Botball Robotics Program
for Middle and High Schools: www.botball.org

© 1993-2007 KIPR 22

Botball is an R&D Design Project

• Botball involves the Design Process
• Botball involves team management and

organization
• Botball involves research
• Botball involves documentation
• Botball involves schedule and resources
• Botball produces a product: your team of robots

© 1993-2007 KIPR 23

In the real-world, most R&D
projects fail

Botball is designed to produce a successful project outcome
• In the real world, projects lack physical resources:

– Botball provides your team with just about all of the parts and software
needed to complete the project.

• Projects do not meet mission requirements
– Botball provides teams with very specific requirements documentation

• Projects meet a technical road block
– Botball has an infinite number of possible solutions -- if your team runs into

a technical problem, there are lots of other ways to solve the problem.
• Project parts are not integrated in-time or at all

– Through documentation requirements and scheduled updates, the Botball
program helps keep your team on a schedule that will yield a functioning
robot solution

© 1993-2007 KIPR 24

Botball
• Educational Goals:

– Technology awareness
– Systems engineering
– Mechanical principles
– C programming
– Design and creativity
– Scientific method
– Learning the invention process (iteration…)
– Documenting your work (on-line)

© 1993-2007 KIPR 25

Botball is NOT Battlebots

• Robots are autonomous
– there is no radio control
– robot’s behavior is based on your program and

feedback from sensors
• Robots do not try and destroy other robots (and

the game makes attempts counter productive)
– they try to out maneuver opponents
– they try to out think their opponents
– they try and do the main task

© 1993-2007 KIPR 26

Botball is a Student Activity...

• Botball robots are student designed, built
and programmed

• Students work in teams
• Mentors are there to answer questions, point

students to resources, act as facilitators, etc.
• Teachers & mentors should be able to

complete their role in Botball with their
hands tied behind their back!

Fall Research Design Project
Sign-up by (1/26); Win Valuable Prizes

© 1993-2007 KIPR 28

NCER 2006: Final

NCER 2007
Honolulu: July 9-13

© 1993-2007 KIPR 29

Botball Today – Botball Tomorrow?
• Xport/XBC

– 16.78 MHz ARM7TDMI 32bit
RISC (GBA)

– 2.9” TFT color LCD (GBA)
– Serial port via USB
– Integrated digital camera

• Qwerk
– 200 MHz ARM9 RISC processor
– Linux 2.6
– WiFi
– WebCam video input
– USB 2.0
– 10/100BT Ethernet
– Serial ports

• iRobot Create

© 1993-2007 KIPR 30

IC: the C Programming
Language used in Botball

© 1993-2007 KIPR 31

IC Software Package
• The IC software is “donation ware”

– It is free and can be freely distributed and used for personal and
educational purposes

– If you like it and are looking for a tax deduction, please consider the KISS
Institute

– If you would like to use IC in a commercial product, contact the KISS
Institute about licensing

• The latest version may be found at http://www.botball.org/ic/
• IC (Interactive C) is a C compiler/interpreter

– Implements most of the ANSI C language
– Interfaces to both the Handy Board and XBC (and others)
– Interactively guides hardware setup requirements, loading firmware

(“pcode” interpreter) and key library functions onto the processor board
– Provides an editor and on-line documentation
– Provides an interactive environment for testing and debugging

© 1993-2007 KIPR 32

Setting Up

• IC runs partly on the PC and partly on the robot board
• The IC editor can be used without an attached robot board
• Code can be checked for syntax errors
• To check for logic errors you:

– Can simulate execution of your program using built in simulator,
or

– Attach a robot and run your program

• The XBC needs to have firmware loaded before programs
can be loaded onto robot

© 1993-2007 KIPR 33

To Install IC
• On a Mac OSX (10.1 and higher)

– Double click on InteractiveCxxx.tar.bz2 file
• The IC folder can be placed in your Applications folder, or

anywhere else convenient
• Note: keep the app and the library folders in the same IC folder

(programs you write can be kept wherever you wish)

• On Windows (Win 2000 and XP)
– Double click on InteractiveCxxx.exe

• IC will be added to your program menu
• An IC shortcut will be placed on your desktop

• On Linux
– If you are using LINUX -- you should know what to do!

© 1993-2007 KIPR 34

C Programming

© 1993-2007 KIPR 35

The C Language
• What is C?
• Where did C come from?
• What is C used for?
• How hard is it to learn C?
• What does C have to do with Botball?
• So, how do you write C programs for robotics or

anything else?

© 1993-2007 KIPR 36

What is C?
C is a high-level block structured language

– C programs appear to be independent of the
specific hardware on which they are executed

– C programs have separate modules which may
be executed independently

– C code is organized into blocks, each of which
contains its own code and variables

– Unlike a human language, C is strictly
governed by the rules of a formal grammar

© 1993-2007 KIPR 37

C: In the Beginning
• C is the brainchild of a Bell Laboratories scientist named

Dennis Ritchie (circa 1970)
• C was preceded by a programming language named B

– And there was one named BCPL which preceded B
• Bell Labs scientists used C to develop the original version

of the Unix computer operating system
– Over 90% of the programming was done in C

• Unix continues to be alive and well today
– Linux is a popular “freeware” version of Unix
– Mac OS/X is also a free version of Unix (with a moderately priced

interface on top)

© 1993-2007 KIPR 38

The C Language

• C is one of the most widely used computer
languages in the world

• C is the basis for C++ and Java
– So learning C gets you halfway through learning those

languages as well
• C was used to write UNIX & LINUX
• C is the primary language for writing applications

for MacOS, LINUX and Windows

© 1993-2007 KIPR 39

Using a C Program
• C programs are just plain text files
• A C program is a collection of one or more C

functions in one or more files
• Exactly one C function in each program is named

main
• The program files are run through a compiler or

interpreter
– These are programs themselves which turn C code into

machine executable code (not human readable - at least
by most humans)

© 1993-2007 KIPR 40

C and Botball
• Botball programming is done in a subset of ANSI

C called IC
• IC stands for “Interactive C”
• IC adds support for multiprocessing (a task

usually controlled by an operating system)
• The IC programming environment includes a

software simulator for each controller
– You don’t have to have a controller to test your

programs!

© 1993-2007 KIPR 41

C is a Small Language

• There are only a few built-in structures and
operations

• Most of the utility is provided by libraries
of functions
– These are just C functions already written and

debugged by someone else
– IC automatically loads the key libraries you

usually need, but more are available

© 1993-2007 KIPR 42

So What’s the Catch?
• From concept to a working program

requires both design and extensive
iterative refinement

• Rigid rules of syntax and semantics for
C produce “sins of omission and
commission”

• Programming discipline, like writing
discipline, has a learning curve

© 1993-2007 KIPR 43

A Simple C Program

void main()
{

printf("This is a C program\n");
}

© 1993-2007 KIPR 44

Function Names

Functions that don’t return anything start with ‘void’
Every C program should have exactly one function named
‘main’

void main()
{

printf("This is a C program\n");
}

© 1993-2007 KIPR 45

Blocks of Code

The braces ‘{’ and ‘}’ act as a wrapper that
contains a code block

void main()

{
printf("This is a C program\n");

}

© 1993-2007 KIPR 46

Function Calls

To call a function, just write its name and a set of
parentheses. If there are any arguments, put them in
the parentheses, separated by commas.

void main()
{

printf("This is a C program\n");
}

© 1993-2007 KIPR 47

Terminating Statements

All C statements end with a ‘;’
A statement is either a function call
(like this printf()) or an assignment
statement.

void main()
{

printf("This is a C program\n");
}

© 1993-2007 KIPR 48

Commenting Programs

/* simple.ic -(c) 2003 David Miller, KIPR */
/* This program displays a simple character string

-- It is a good idea to start each function with a
comment that explains what the function does --

[this comment and the previous one are in multi-line form] */
void main()
{

printf("This is a C program\n"); // display the string
} // end of main [this comment and the previous one are in-line]
/* Hmm ... the last in-line comment is pretty superfluous;

it’s a waste of valuable eye time! */

• Explanatory comments
– Can (and should) be added to a program to assist in understanding it later

• Syntax
– In-line form: // comment text

• The comment ends when a new line is started
– Multi-line form: /* comment text */

• The comment starts with an initial “/*” and continues until “*/” is encountered
• Example:

© 1993-2007 KIPR 49

Indentation…
• C ignores most white space (spaces, returns, tabs, blank

lines)
• Indenting C program text helps to bring out the structure of

your program
– Indent code after each ‘{‘
– Shift back to left after each ‘}’
– Indent the second line of a single statement (exception: any added

white space inside a quoted string will print!)
• IC’s built in editor does most indentation for you!

– Programs are automatically indented when loaded
– The IC edit menu provides commands for indenting your text

without saving and reloading

© 1993-2007 KIPR 50

IC Environment and Simulator

© 1993-2007 KIPR 51

Start Up IC

Launch IC

© 1993-2007 KIPR 52

Set IC to use the XBC Controller
STEP 1 – Choose XBC then OK: STEP 2 – Cancel Communications for now:

© 1993-2007 KIPR 53

– Program services
• Compilation check of

active file
• Communication with

attached controller
– Download
– Run main
– Stop

• Launch simulator
– Has to be from a

file tab with a
valid IC file
(which may be
blank)

IC Environment
– Drop down menu bar
– File shortcuts
– Tab for interaction

window
• Only works if a

controller is attached
• Simulator has its

own interaction
window

– File tabs
• One per open file

– Program entry/edit
window for active file
tab

© 1993-2007 KIPR 54

IC Drop Down Menus

Not needed when
working with the
simulator

Sets simulator
configuration

Matched to
controller
selected

© 1993-2007 KIPR 55

Create, Edit and Save a New File
1) Create a New file: 2) Type your program into the file: 3) Save the file:

NOTE 1: remember
where you saved your file

NOTE 2: you can VERIFY that
the XBC is the “current active
controller type” by viewing the
window title which tells you:
1) The version of IC running
2) The controller type selected

(if any)
3) The serial port selected

(if any)

© 1993-2007 KIPR 56

Launching the Simulator

Launch
simulator

© 1993-2007 KIPR 57

Running your Program

Run Program

© 1993-2007 KIPR 58

Observing Results

Observe
result

© 1993-2007 KIPR 59

Returning to IC

You must cancel
the Simulator
before you can
use IC again

© 1993-2007 KIPR 60

How to Program
• Think about and explicitly state goal
• Collect Requirements:

– Identify things that must be done (independent of solution method)
• Method of Execution:

– Think of relevant examples or similar problems and their solutions
– Choose your tools (in this case it is IC)
– Iterate and refine until done:

• create the program to address the requirements
• test syntax
• test functionality/logic

– Celebrate!

© 1993-2007 KIPR 61

Exercise #1: Step by Step
• Goal: Create a program that prints your name on the screen.
• Start IC, choose the XBC, and click the "New" button on the IC

window
• Type in a program that prints your name and save it
• Check the syntax of your program by clicking on the "Check" button
• If there is an error, IC stops checking and reports the line number

where it encountered the problem
– you can use the Edit .. Goto Line drop down menu to get to the problem
– Note: the error occurs on OR before that line

• Load the program to the simulator by clicking on the IC’s “Simulate”
button

• Run the program by pressing the “Execute” button on the simulator
pane

© 1993-2007 KIPR 62

Variables and Data

© 1993-2007 KIPR 63

Numeric Data in C
• There are three types of numbers implemented in C

– Integer
• in IC, a 16 bit binary number in the range -32,768 to +32,767

– Long integer
• in IC, a 32 bit binary number in the range -2,147,483,648 to

+2,147,483,647
– Floating point numbers (fractions)

• in IC, a 32 bit representation in “scientific notation” for numbers such
at 3.141659

• Arithmetic can only be performed on items of the same
type
– There are built-in means for working with “mixed” expressions

• Integer arithmetic (integer or long integer) is handled by
hardware circuits, so it is fast

• Floating point arithmetic is handled by software, so it is
slower than integer arithmetic (although not slow in
comparison to humans!)

© 1993-2007 KIPR 64

C Variables & Data Types
• Variables retain data for later use

– Variables are employed in constructions such as arithmetic expressions
• Each variable represents a location in computer memory, so its type must

be specified for C to know how it is to be interpreted
• Syntax: <data-type> <variable-name> ;
• Numeric data types

– int i;
• specifies i to be an integer variable
• 16 bit memory location
• Range -32,768 to +32,767

– long j;
• specifies j to be a long integer variable
• 32 bit memory location
• Range -2,147,483,648 to +2,147,483,647

– float k;
• specifies k to be a floating point variable
• 32 bit memory location to be interpreted as representing a number in “scientific

notation” (exponent & mantissa format)
• There are also non-numeric data types (see IC documentation)

© 1993-2007 KIPR 65

Integer Arithmetic (int & long)
• + is used for addition

X + Y means X plus Y
• - is used for subtraction

X - Y means X minus Y
• * is used for multiplication

X * Y means X times Y
• / is used for division

X / Y means X divided by Y with the decimal truncated
• % is used for modulus (when the arguments are

positive, this is just the remainder)
X % Y means the remainder when X is divided by Y

(assuming that X and Y are positive)

© 1993-2007 KIPR 66

Arithmetic Using the Simulator
Interaction Window

• Enter an arithmetic expression
3 + 7 – 8;

– and press Enter
– Observe result
– Use cursor “up arrow” to scroll interaction

window up to most recent entry

© 1993-2007 KIPR 67

Floating Point Arithmetic
• The result of an operation on floating point numbers is a

value of type float
• Any integers used must have a decimal point so that they are

of type float (e.g., 3.0 instead of 3)
– The +, -, * operations work as before except that the result is a
float (retains a decimal fraction, even if it is 0)

• the work is now being done in software instead of at the hardware level
– With floating point arguments the / operation retains the decimal

fraction rather than truncating it
• % is not defined for floating point numbers

© 1993-2007 KIPR 68

Getting Data into Variables
• A data value can be assigned to a variable when it is declared

int j=10; //integer variable j, initialized to 10
float pi=3.1416; /*floating point variable, initial value

approximately π */

• A data value can be assigned to a variable as part of program execution
int i,j=10; //integer variables i and j, j initialized to 10
i = 2; //assign (or store) the value 2 in i

• Variables can be used in expressions and assigned new values
– Continuing the previous example

int i,j=10; //integer variables i and j, j initialized to 10
i = 2; //assign (or store) the value 2 in i
i = i + j; //compute i+j and store the new value in i

– What is the value of i now?

© 1993-2007 KIPR 69

“Mixed” Expressions
• Remember that for IC int, long, and float are

different types of data
– Humans expect 5.1 + 3 to add to 8.1
– Try it using the simulator

• IC produces an error because from its point of view 5.1 and 3 are two
different kinds of data and the expression mixes them

• You could just enter 5.1 + 3.0 to correct the problem, but
your numbers could be in variables in which case adding a
decimal point would not be possible
– Using the simulator try

5.1 + (float)3;
– This is call a “cast” since you are casting the int 3 to its closest
float equivalent (which is 3.0)

• Casting is a built-in operation in IC used when you need to operate on
data that is of different types

© 1993-2007 KIPR 70

Classification of Variables
• Recap: each C variable used in a program must be specified (or declared)

int i; //integer variable
int j=0; //integer variable, initialized to 0
float pi=3.1416; /*floating point variable, initial

value approximately π */
– This will create variables i, j, and pi

• There are two major classifications for variables
– Global variables
– Local variables

• A global variable is one whose specification is outside of all functions,
including main()

• A local variable is one whose specification is inside a block or function
– Local variables for a block must be specified at the beginning of the block (right

after the “{“)
– A local variable is valid only within the block in which it is declared (the scope of

the variable)
• A local variable name can be the same as a global variable name, in which case only the

local meaning is recognized
• The basic “scope rule” is that if a variable name is used in a block, the most local version

is the one recognized

© 1993-2007 KIPR 71

Displaying Variable Values
using printf();

• The values of variables used within a program can be displayed using the IC
library function printf.

• printf is a version of the printf function in the standard C library
– Limited by the abbreviated display capabilities of the robotics controller
– Only prints to the robot controller’s display
– For the simulator, the output is to the simulator’s Print Buffer window

• Syntax: printf(<text-string>, <arg1>, <arg2>, . . .);
• For each argument, a corresponding “% code” is embedded as a

“placeholder” within the <text-string>, to be replaced by the value of the
argument when the printf is executed
– Example:

printf("volts=%f R=%d\n", voltage, resistance);

– %d and %l correspond to int and long arguments
– %f corresponds to a float argument
– \n positions you at the start of the next line in the Print Buffer window
– The on-line documentation has a more complete description of printf()

© 1993-2007 KIPR 72

Try it on the Simulator
• In the simulator interaction window try a simple expression such as

2+3*5;
– Is the result (2+3)*5 or 2+(3*5)?

• C semantics determines the implied order of operation if the expression is not
fully parenthesized

• Next try printing the value of the arithmetic expression
– printf("%d\n", 2+3*5);

• Now try
– printf("%d\n", 114/5);

• For C semantics, the result of an integer division is truncated (as opposed to
rounded)

• Now try
– printf("%f\n", 114.0/5.0);

• Now try something more complicated, such as
– {int i=7,j; j=i*9; i=i*j/2; printf("%d\n",i);}

• Did you get (i*j)/2 or i*(j/2)?
– Or try something of your own choosing!

© 1993-2007 KIPR 73

Functions in General

© 1993-2007 KIPR 74

About Functions
• Remember your math functions?

– A typical function
• Area of a circle is a function of the radius

– The “area function” for a circle is the Greek circle constant π times
the radius r squared, or A(r) = πr2

– In general we use the notation f(x) to represent a function
where f is the name of the function and x is its argument

• Functions can have more than one argument, e.g., f(x,y)
– Functions are “deterministic”, meaning that if you supply

values for the arguments, the function produces a unique
result

• A(50) = 2500π which is approximately 7853.981634

© 1993-2007 KIPR 75

Functions in C
• C functions follow the same rules as math functions,

except a C function can return nothing (is void) and it
doesn’t have to have any arguments
– You’ve already written one of these, main!

• Since variables in C have differing types, you have to
specify the data type for each of your function’s
arguments, and the type of data returned by the function
– For the area function this would appear in the form:

function name argument name
float circ_area(float r)

data type returned data type for the argument
– This is called the function’s prototype, since it clues you as to how

to use the function
– You may have noticed that the documentation for each library

function provides the function’s prototype

© 1993-2007 KIPR 76

Writing Your Own IC Functions
• The general function syntax in C is

<type> fn-name (<type> arg1, <type> arg2, …)
{<function-body> }

• main is a function with no arguments, and returns nothing
void main() {

printf ("a very simple C function");
}

• The area function requires an argument and returns the area of a circle that has
the radius given by the argument
float circ_area(float r) {

float pi = 3.141593; // approx value of pi
return(pi * r * r);

}
• Copy the circ_area function into IC, save as “circle_fns.ic”, and

launch the simulator
• Test your function

– Enter circ_area(50.0) in the simulator’s interaction window
– Note the effect approximating π has on the result! (compare to the better

approximation of 7853.981634)

© 1993-2007 KIPR 77

Libraries

• A library is an IC file that contains a set of
functions but no main function

• A library serves as an organizational tool
• IC automatically loads some libraries to give you

basic functions like printf and robot motor
commands

• You can use the functions in additional libraries
by telling IC to use them

© 1993-2007 KIPR 78

Using IC Functions, #use
• To use your area function, you call it the same way you would call any of the IC library

functions
• To provide IC with the definition of your area function, you could just copy its

definition in with your main function; eg.,
void main() {

float r=50.0;
printf("circle of radius %f\n",r);
printf("area: %f",circ_area(r));

}
float circ_area(float r) {

float pi = 3.141593; // approx value of pi
return(pi * r * r);

}
• The IC “preprocessor directive” #use provides the means for giving IC the definitions

of functions your are maintaining in a separate file
#use "circle_fns.ic"
void main() {

float r=50.0;
printf("circle of radius %f\n",r);
printf("area: %f\n",circ_area(r));

}
• The IC library is just a file of IC functions (“libxbc.ic” for the XBC) that is

automatically used with the controller selected

© 1993-2007 KIPR
79

Exercise

• Add a function named circ_circum to your

circle_fns.ic “library” file. Modify the main

function on the previous slide to print the circumference as

well as the area.

– Remember that the circumference function is C(r) = 2 r

– Note that #use requires one space between the word use and the

file name.

– Hint: copy/paste the circ_area function, change the name of

the pasted copy to circ_circum and fix the formula used in the

return statement to compute the circumference

© 1993-2007 KIPR 80

IC Robot Simulator: iROBOSim

© 1993-2007 KIPR 81

But What About Robots?

• Robots are just computational devices that interact
with the world by side effect.

• Robots can operate in the physical or virtual
world.

• Botball provides an IC library that simulates a
simple robot, iROBOsim, and some simple worlds

• Programs written for iROBOsim can be run on the
IC simulator, and with very minor changes, also
be run on a physical Botball robot.

© 1993-2007 KIPR 82

Install iROBOsim

• Copy the contents of the iROBOsim folder
(from the team CD) into the
InteractiveCxxx/lib/xbc folder.

• When writing programs for iROBOsim
always do a:
#use "iROBOsim.ic"

at the beginning of your program file

© 1993-2007 KIPR 83

Example iROBOsim Program
• This program runs the simulated

robot for 10 seconds.
• Try typing it in! (you can also

copy/paste from the e-copy of
these slides)

• Save in a file named move10.ic
• The diamond shaped robot is

red on the front left and green
on the front right

• rsim_mav powers a motor
• rsim_ao turns all motors off
• We’ll get to what this code

means but first some
background info

#use "iROBOsim.ic"
void main()
{

//initialize simulator
//use world keyword
iROBOinit(EMPTYWORLD);
//motor 0 is left motor
rsim_mav(0,200);
//motor 1 is right motor
rsim_mav(1,200);
//leave motors running 10 secs
sleep(10.0);
//turn a[ll motors] o[ff]
rsim_ao();

}

© 1993-2007 KIPR 84

Motor Functions

© 1993-2007 KIPR 85

XBC Motor Functions

• XBC has four motor ports (0,
1, 2 & 3)

• The iROBOsim robot also
has four ports. 0 is for the
left motor, 1 is for the right
motor, and 2 and 3 are TBD

• iROBOsim motor functions
are the same as XBC motor
functions except they have
"rsim_" prefixing the
function name

© 1993-2007 KIPR 86

XBC Motor Functions

• The XBC uses intermittent measurements of the motor
back EMF (electromagnetic force) to estimate motor
position and velocity. This can be considered magic as far
as Botball is concerned. See appendix.

• For the black gear motors included with the XBC
electronics kit, one full rotation = about 1100 “ticks” -- a
unit of measure for rotation

• The velocity measure is ticks per second (magnitude 0-
1000)

© 1993-2007 KIPR 87

XBC Motor Functions
• Get the current tick count of motor 0:

get_motor_position_counter(0);
• Move the motor at a speed of 0.5rps (550 ticks/sec) to position 30000:

mtp(0,550,30000L);//move to position
• Move the motor backwards at a speed of 0.25rps (275 ticks/sec) for 1

revolution: mrp(0,275,-1100L);//move relative position
• Move a motor indefinitely at a given velocity (e.g., backwards at 1rpm (18

ticks/sec) (wow that is slow!) mav(0,-18);//move at velocity
• Turn motor 0 off: off(0);
• Turn all motors off: ao();
• iROBOsim has versions of these functions:

rsim_get_motor_position_counter, rsim_mtp,
rsim_mrp, rsim_mav, rsim_off and rsim_ao.

• See XBC Motors in the Appendix for more details

© 1993-2007 KIPR 88

Library Functions and iROBOsim

© 1993-2007 KIPR 89

IC Library Functions
[e.g., sleep(seconds);]

• All of the functions below work on the XBC, simulator and iROBOsim
• IC provides a number of library functions specifically to support use of the

XBC (see IC’s on-line documentation for the complete list)
– We’ve already looked at one of these, printf()
– IC library functions are downloaded to the XBC when the IC environment

connects
– IC library functions are provided to the simulator when it is launched

• After the simulator has been started, the functions can be listed back in IC by
using the

Tools..List Functions feature of the IC toolbar
• sleep() is another one of these – it pauses the function’s execution for an

amount of time equal to the number of seconds given by its argument
(expressed as a float)

– On-line documentation appears as follows:

sleep [Category: Time]

Format: void sleep(float sec)
Waits for an amount of time equal to or slightly greater
than sec seconds. sec is a floating point number. Example:
/* wait for 1.5 seconds */ sleep (1.5);

© 1993-2007 KIPR
90

Example Using rsim_mrp

• This example moves

the robot 2000 ticks

forward and then back

half the distance

• The sleep function

gives time for the

robot to move before

moving on to the next

command.

#use "iROBOsim.ic"
void main()
{
 //initialize simulator
 //use world keyword
 iROBOinit(RULERWORLD);
 //move both motors fwd
 rsim_mrp(0, 400, 2000L);
 rsim_mrp(1, 400, 2000L);
 //this sleep is longer
 //than should be needed
 sleep(8.0);
 //move both motors back
 rsim_mrp(0,300, -1000L);
 rsim_mrp(1,300, -1000L);
 //leave motors running no more
 // than 5 secs

 sleep(5.0);
}

© 1993-2007 KIPR
91

Example Using rsim_bmd

• The previous example
used sleep to give time
for the mrp commands to
execute.

• The “block motor done”
or bmd command pauses
your program just long
enough for the motor
command to complete

• Using bmd eliminates the
need to calculate in
advance how long you
think the motor command
will take.

#use "iROBOsim.ic"
void main()
{
 //initialize simulator
 //use world keyword
 iROBOinit(RULERWORLD);
 //move both motors fwd
 rsim_mrp(0, 400, 2000L);
 rsim_mrp(1, 400, 2000L);
 //Now wait until motors
 //have reached goal positions
 rsim_bmd(0); rsim_bmd(1);
 //move both motors back
 rsim_mrp(0,300, -1000L);
 rsim_mrp(1,300, -1000L);
 //leave motors running till
 //motors reach positions

 rsim_bmd(0); rsim_bmd(1);
}

© 1993-2007 KIPR 92

Some More Useful Functions
• All of the functions below work on the XBC, simulator and

iROBOsim
• beep();

– The simulator is silent, but blinks the Beeper Status On/Off,
flashes the Print Buffer, and shows the Frequency value (500)

• Built-in sensors
– The simulator has “Off/On” toggle buttons for each built-in sensor

• button “a” simulates the Gameboy A button, “b” the B button, etc
– a_button()returns the current value of the A button (which will

be 0 for “off”and 1 for “on”)
• Toggle the button labeled “a” on the simulator by clicking it
• Execute printf("%d\n", a_button()); from the simulator’s

interaction window to verify the value
– b_button()returns the current value of the B button

© 1993-2007 KIPR 93

Moving a Distance

© 1993-2007 KIPR 94

Calculating Distance
• To find out how far a robot has traveled you need to know:

– diameter of the wheels
– the number of wheel rotations (could be a fraction)

• Traveling a specific distance can be very useful
• The distance traveled in one wheel rotation provides you with another

way to calculate the diameter of the wheels
– distance = π x diameter
– diameter = distance/π

• For a physical robot:
– You can check the motor position counter on the XBC (motor display

activated by using the shoulder buttons)
• The motor position counter counts the “ticks” used to measure motor rotation

– By rolling your bot and observing the change in the motor position
counter you can determine how many “ticks” it takes to roll 10cm

• Divide by 10 to calculate “ticks per cm”
• Do multiple times and average

• For iROBOsim ticks/revolution and diameter of wheels are pre-set:
– 1100 ticks/rev
– 5.6cm diameter

© 1993-2007 KIPR 95

Exercise: Calibrate Your Robot
• In iROBOsim

– each pixel is equivalent to 1cm.
– Your simulated robot has wheels that are 5.6cm in diameter
– Each wheel is connected directly to a simulated black gear motor, which requires 1100 ticks

per revolution
– RULERWORLD has marks along the bottom of the world that are 30cm apart (about 1 foot).
– The motor movement initiated by an rsim_mrp or rsim_mtp command continues until the

motor position gets within 100 ticks of the goal position or until another motor command is
executed.

– Your robot starts out with its center at (30, 100) facing right where (0, 0) is the upper left
corner and X increases to the right and Y increases downwards.

• Write a program that will move your robot to about position (120, 100) -- which is the
4th hash mark from the left -- and have the robot stop there.

– Use your knowledge of geometry to calculate the correct arguments to the rsim_mrp
function.

– Have your robot beep when it is done.
– Test your program.
– If you finish early, calculate the maximum difference that there might be, in cm, between

different runs of your program.

© 1993-2007 KIPR 96

Programming in IC
Repetition using while

© 1993-2007 KIPR 97

Program Flow

• When a program is run, the control moves from
one statement to the next

• Calculate j2 + 1 when j = 3
void main()
{

int r,j; // declare r and j
j = 3; // assign a value to j
r = j*j + 1; // calculate and assign
printf("result is %d\n",r);

}

© 1993-2007 KIPR 98

Program Flow (2)
• If you wanted to beep 20 times in a row you

could type in
beep();

20 times
• But C offers other flows than one step after

another
• A better way to beep 20 times is to use a

while loop

© 1993-2007 KIPR 99

• Syntax: while (<test>) {statements}
• Beep 20 times

void main()
{

int num; /* declare counter */
num = 1; /* initialize counter */
while (num <= 20) /* loop while num is <=20*/
{

beep(); /* beep once */
num = num + 1; /* add one to the counter */

}
}

Repetition Using while

© 1993-2007 KIPR 100

Digital Sensors

© 1993-2007 KIPR 101

Digital Sensors

• Digital sensors are ones which produce an “off”
(0) or “on” (1) signal.

• Most GameBoy buttons are accessible as built-in
digital sensors when using IC

• There are library functions specific to each built-in
sensor

• The XBC has digital “ports” to use with two-state
plug-in sensors
– accessed using the digital or extra_digital

library function

© 1993-2007 KIPR 102

The GBA SP
Buttons &

Library
Functions

L “shoulder” button
(under the hinge)

R “shoulder” button
(under the hinge)

right button

left button

up button

down button

A button
(choose)

B button
(escape)

start button
select button

back-light off/on button power indicator LED

recharge indicator LED

All of these
functions work on
the XBC, simulator
and iROBOsim

l_button()

up_button()

left_button()

right_button()

down_button()

r_button()

a_button()

b_button()

© 1993-2007 KIPR 103

Gameboy Buttons & Library Functions
L “shoulder” button R “shoulder” button

right button

left button

up button

down button

A button
(choose)

B button
(escape)

start button
select button

a_button()

b_button()

r_button()

l_button()

down_button()

right_button()

left_button()

up_button()

All of the functions below work on the XBC, simulator and iROBOsim

© 1993-2007 KIPR 104

Digital Sensor Port Simulation
• All of the functions below work on the XBC,

simulator and iROBOsim
• The Simulator allows you to set the values for each

of the digital ports
• Digital ports

– Used with plug-in two-state sensors such as switches
– Have value either 0 or 1
– Are the ports numbered 8-15
– The library function digital(<port-number>) accesses

ports 8-15

© 1993-2007 KIPR 105

Analog Sensors

© 1993-2007 KIPR 106

Analog Sensors
• Analog sensors are ones which produce a range of integer

values, not just 0 and 1
• The XBC has analog ports and floating analog ports for

plug-in sensors, which are accessed using either the
analog library function or the analog12 library
function
– With the analog function the return values are scaled to the

range is 0-255, with analog12, to 0-4095
• There are two types of analog sensors used with the XBC:

regular analog sensors (such as light sensors), and floating
analog sensors (such as distance sensors)

© 1993-2007 KIPR 107

Analog Sensor Port Simulation
• All of the functions below work on the XBC, simulator and

iROBOsim
• The Simulator allows you to set the values for each of the

analog ports
• Analog ports

– Used with sensors that produce a range of values
– Have integer value scaled to the range 0 through 4095

• Analog value is represented by a 12 bit binary number
– Are the ports numbered 0-7

• Ports 0 and 1 are “floating analog” for use with floating analog sensors
• Ports 2-6 are used with regular analog sensors.
• Port 7 is used for monitoring the battery volts.

– The IC library function analog12(<port-number>) is used to access
the analog ports

– The library function analog(<port-number>)scales the return value
to the range 0 to 255

© 1993-2007 KIPR 108

iROBOsim sensors

© 1993-2007 KIPR 109

iROBOsim Sensors
• The iROBOsim robot has 4 touch sensors, which are pre-set

for 4 digital ports:
– digital(8) returns 1 if the right front bumper is pressed and 0 if

it is not being pressed.
– digital(9) does the same for the right rear bumper.
– digital(14) does the same for the left rear bumper.
– digital(15) does the same for the left front bumper.

• If iROBOsim detects the robot running into an obstacle
(graphically, a blue line), the appropriate sensor becomes
pressed.

• Note that in the simulation the robot will go right through
the wall unless your program tells it to do something else!

© 1993-2007 KIPR
110

• Syntax: while (<test>) {statements}

• Move forward until B button is pressed

 #use "iROBOsim.ic"
void main()
{
 iROBOinit(RULERWORLD);

rsim_mav(0,200); //start left motor
rsim_mav(1,200); // start right motor

 while (b_button() == 0)
 {/* just waiting for button press */ }

 rsim_ao(); // stop all the motors
 beep(); // beep once to alert user robot is stopped
 //report dist traveled
 printf("Stopped after %l ticks\n",
 rsim_get_motor_position_counter(0));
}

Mode Switching Using while
== means is equal to

|| means or

&& means and

! means not

© 1993-2007 KIPR 111

Exercise

• Modify the program above to create a
ping pong robot that bounces
between walls
– HINT:

• go forward; while neither front bumper is hit
- wait;

• go backwards; while neither rear bumper is
hit - wait;

• stop;
• to check if X and Y are both 0 do (X==0
&& Y==0)

== means is equal to
|| means or
&& means and
! means not

© 1993-2007 KIPR 112

Differential Steering and Turns

© 1993-2007 KIPR 113

Differential Steering

• Steering is accomplished by having 2
independently powered wheels or treads
mounted along a single axis
– If the motors are operated at the same speed,

the vehicle goes straight
– If the motors are operated at different speeds,

the vehicle turns, or spins

© 1993-2007 KIPR 114

Calculating Turns – Differential
Steering

r
r-w/2

r+w/2

For a robot with a wheel separation of w…
• When traveling a complete circle the

robot will travel 2πr
• The left wheel will travel: 2πr - πw
• The right wheel will travel 2πr + πw
• If the right travels 2πw further than the

left, the robot’s made a complete CCW
circle

• If the left goes πw more than the right, the
robot has turned CW 180 º

• This determines the degree of turn for any
angle measured in radians (e.g., π/2=90 º)

© 1993-2007 KIPR 115

• Measure your robot’s wheel base wb
(distance between the center of the tire
treads)
– for iROBOsim wb = 12cm

• You should already have determined
“ticks per cm” for your bot.

• If you power only the left wheel your
robot will turn like this

• and trace out an xº arc
• x/360 is the fraction of the full circle

being traced, so the tire needs to move

2π · wb · x/360 for an xº turn

Example: Turn xº Using 1 Motor

xº

© 1993-2007 KIPR
116

Example IC Code to Turn xº

(using 1 motor)

// global variables used

float pi=3.1416;

float wb=12.0; // wheelbase in cm

int tickspercm=62; // dependent on wheel size

int mL=0, mR=1; // motor ports for left and right motors

int vel=250; // motor speed for turn

// Note that this is a function. A main is needed to call it!

void turn_mL(float x) { // turn using L wheel (x >= 0)

 long pos, curr;

 float dist;

 dist = 2.0*pi*wb*x/360.0; // distance in cm to roll along

 pos = (long)(dist*(float)tickspercm); // ticks needed to do it

 rsim_mrp(mL,vel, pos); // operate wheel at specified velocity

 // move until the motor position counter is pos more

 // bmd keeps function from returning till done

 rsim_bmd(mL);

}

© 1993-2007 KIPR 117

Example: Turn in Place xº

• Turning in place simply requires running one
wheel in the opposite direction from the other

• Taking the computation for turning xº and
dividing by 2 gives the amounts to move each
wheel
– One tire needs to move π · wb · x/360
– The other needs to move -π · wb · x/360

© 1993-2007 KIPR 118

Example IC Code to Turn in Place xº
if – else to select direction

//global variables used
float pi=3.1416;
float wb=12.0; // wheelbase in cm
int tickspercm=62; // dependent on wheel size
int mL=0, mR=1; // motor ports for left and right motors
int vel=250; // motor speed for turn

// Note that this function handles CW and CCW turns. Also, it tracks motor position
// itself rather than using mrp and bmd.

void turn(float x) { // x > 0 for left turn, x < 0 for right
long pos, currL, currR;
int dir; // used to keep pos > 0
if (x < 0.0) dir = -1;
else dir = 1;
pos = (long)((float)tickspercm*((float)dir*pi*wb*x/360.0));
currL=rsim_get_motor_position_counter(mL);
currR=rsim_get_motor_position_counter(mR);
if (x > 0.0) { // turn left

rsim_mav(mR,vel); rsim_mav(mL,-vel);
while (rsim_get_motor_position_counter(mR) < pos+currR);

}
else { // turn right

rsim_mav(mR,-vel); rsim_mav(mL,vel);
while (rsim_get_motor_position_counter(mL) < pos+currL);

}
rsim_ao();

}

1/2 the distance
used before

© 1993-2007 KIPR 119

Exercise: Make a Square
• Use the functions for turning and your calibration

experience and write a program to have your robot
move in a square 60cm on a side.

• In your main routine, put the line:
iROBOtrail=1;

right after the call to iROBOinit(RULERWORLD).
– This will have your robot paint a trail behind it making it

easier to evaluate the quality of your geometry.
• Once you have mastered the square, try having your

robot make a 60cm circle -- note that you may have
to move the robot first to give it some room

© 1993-2007 KIPR
120

if-else Selection Within while
(wandering robot)

#use "iROBOsim.ic"
//initialize the simulator with EMPTYWORLD, RULERWORLD, ARENAWORLD

void main() {
 iROBOinit(ARENAWORLD); iROBOtrail=1;
 rsim_mav(0,250); rsim_mav(1,221); //left motor & right motor
 while(!digital(10) || iROBOstopSim) {
 if(digital(8)) { //right bumper
 rsim_mav(0,-200); rsim_mav(1,-200); sleep(.5);
 rsim_mav(1,300); rsim_mav(0,-300); sleep(.5); // spin CCW
 rsim_mav(0,400); rsim_mav(1,400);
 }
 else {
 if(digital(15)) { // left bumper
 rsim_mav(0,-400); rsim_mav(1,-400); sleep(.5);
 rsim_mav(0,400); sleep(.5); //spin CW
 rsim_mav(1,400);
 }
 }
 }
 iROBOend();
 rsim_ao();
}

© 1993-2007 KIPR 121

The 2007 Botball Kit Electronics

© 1993-2007 KIPR 122

The Botball Electronics Kit (1)
Analog SensorsTool + Digital Sensors

© 1993-2007 KIPR 123

The Botball Electronics Kit (2)
Servos & Motors

4

1

4Ferrite Beads

© 1993-2007 KIPR 124

The Botball Electronics Kit (3)
XBC Controller

3

3

USB

optional
GBAsp & charger

© 1993-2007 KIPR 125

Building with Lego: Demobot

© 1993-2007 KIPR 126

Building With LEGO
• Like programming, mastering the art of building with

LEGO takes time – the following are a few tips to get you
started:
– Adding MORE Lego to a structure does NOT automatically make

the structure stronger!
– Use pins and “axle joiners” – with the newer Lego pieces, pins and

joiners (all sorts of types) are your new best friends
– If the Lego pieces aren’t fitting together “naturally”, don’t force

them – there are many other combinations of pieces that might
solve the problem

• Borrow “tricks” from examples – for instance examine the
gearing and joints in the Demobot example (next)

© 1993-2007 KIPR 127

Build Demobot

• Three building aids
1.Solidworks eDrawing of Demobot

―Use eDrawing Viewer
―Hide and reveal pieces in assembly order

2.Powerpoint step by step instructions
3.Real-time step by step assembly movie (see an

expert build a demobot that is almost the same
as the one in the directions)

© 1993-2007 KIPR 128

Preparing Motors for Demobot
• Demobot uses a DC motor for each wheel (2)

– Plugs into the XBC motor ports
• gray cable with 2 prong plug

– Remove the current (red) mounting plate and
replace as directed (supplied screwdriver)

• Use supplied brass screws (in a separate bag)
with the brass collars from the servo motor bag

• Demobot uses a DC motor for the claw (1)
• Demobot uses a servo motor for the arm (1)

– Plugs into the servo motor ports
• Black (-), Red (+), Yellow (S) cable

– Remove the current mounting plate and
replace with a red mounting cross

© 1993-2007 KIPR 129

Motor Ports

2 DC motor ports on each side
(2 and 3 on this side)

4 servo motor ports
(S0, S1, S2, S3)

-
+
S

To match with iROBOsim, plug the
left motor into DC motor port 0 and
the right into 1; we will also assume
the gripper is in DC motor port 2 and
the arm in servo motor port 0

We will determine motor polarity for
the DC motors shortly (ie., which
way the plug should be inserted)

© 1993-2007 KIPR 130

Day 2

© 1993-2007 KIPR 131

XBC Checklist
• XBC

– XBC main board with camera
– XPORT FPGA (small circuit board screwed on top)
– Battery boxes (mounted on bottom) w/Lego attachments
– 7.2v NiMH battery pack

– GBAsp (XPORT slides into game slot)
– GBAsp power cable and wall charger

• USB-AB cable
• AC Adapter 13.5v

Except for teams supplying
their own Gameboys

© 1993-2007 KIPR 132

XBC v3 Board Setup

USB Cable

XBCv3 w camera & GBAsp:
7.2V NiMH 6 cell Battery

Charger:
13.5V – 1 amp

GBAsp power
cable

© 1993-2007 KIPR 133

XBC (v.3 w/GBA SP and Camera)

charge port

Servo Ports
(wire order Y|R|B)

USB Serial Connector
(when programming)

off
on

0

1

Floating
Analog (0-1)

Analog
Ports (2-6)

Digital
Ports (8-15)

Camera Port

Motor Ports
2

3
Motor Ports

Power Switch

R “shoulder” button
r_button()

A button (choose)

B button (escape)

a_button()

b_button()

L “shoulder” button
l_button()

right button

left button

up button

down button
down_button()

right_button()

left_button()

up_button()

start buttonselect button

Gameboy power

Screen back light off-on

© 1993-2007 KIPR 134XBC v3 Jumper Settings
(visually inspect to see if settings are correct)

Hidden pin is hard to spot!

Back 2 pins

Front 2 pins
Front 2 pins for
GBAsp, rear 2 for
GBA from XBC v2

Front 2 pins

© 1993-2007 KIPR 135

Charging XBC v3 Batteries
• Charging is best accomplished using the XBC 13.5v 1000mA

AC charger plugged into the XBC with the XBC turned off
– If your Gameboy has functional batteries, you should turn it off, too!

• Yellow charging light flashes when battery pack is being
rapidly charged

• Yellow charging light turns solid on when battery pack is 60%
charged and indicates a slower, maintenance level charge

• To achieve a full charge, allow the XBC to charge for 3 hours
• The battery pack installed in your XBC is a 2000mAh 7.2V

NiMH Pack
• The XBC will charge while it is on, but the times will be

longer and vary depending on how the XBC is being used

© 1993-2007 KIPR 136

A Note on Gameboy Options
• For Botball, you can use any one of the

following Gameboy models with the XBC:
– Gameboy Advance (GBA)
– Gameboy Advance SP (GBAsp)
– Gameboy Micro

• Dual Screen (DS) Nintendo models may not be used in place of the above
models for Botball competitions

• If you use the Gameboy power connection on the XBC
– If your Gameboy has functional batteries and you turn off the XBC before turning off

the Gameboy, the XBC won’t turn off until you turn off the Gameboy (drawing
power from the Gameboy batteries!)

– The Gameboy batteries will charge only if the XBC is on, but this will slow down
XBC charging (so Gameboy batteries should be charged independently)

– It is best to remove the Gameboy from the XBC for charging (in particular, trying to
charge an installed Gameboy while the XBC is charging is not a good idea)

© 1993-2007 KIPR 137

Connecting to the XBC v3
• This year's XBC has a USB to serial converter built

into the XBC
• You must have the proper USB driver installed on

your system
• Get the XBC USB driver from the team CD (or via

the web at http://www.ftdichip.com/Drivers/VCP.htm)
• Install the driver
• Connect the XBC via USB cable to your computer
• In IC, select the new serial port that appears

(typically COM 5 or higher on PC or
/dev/tty.usbserial-xxx on Mac)

© 1993-2007 KIPR 138

Loading Firmware from IC (1)

• When you download a
program to the XBC,
you may get a
firmware warning. If
so:
– Select “Download

Firmware” from the
“Tools” menu

© 1993-2007 KIPR 139

Loading Firmware from IC (2)
• The “Firmware

Download” window
will appear

• Read the instructions
• Turn off the GameBoy
• Click the “Download

Firmware” button

© 1993-2007 KIPR 140

Loading Firmware from IC (3)
• When the “Waiting for

Gameboy Power
On…” message
appears at the
bottom…

• Turn on the Gameboy

© 1993-2007 KIPR 141

Loading Firmware from IC (4)
• The progress bar will

advance to the right
• The bar and the window

will disappear when the
firmware load is complete

• Do not turn off the XBC
or disconnect things until
either the firmware load
has been cancelled or it
has been completed and
the Gameboy has reset

© 1993-2007 KIPR 142

What to Load and When
• Bitstream: You may never have to load it -- bitstreams are

updated very rarely
– Current version is: bitstream8d05.bit
– This version requires firmware version 3.0 or higher
– IC will tell you when the bitstream needs to be replaced
– Bitstream is updated using the Xport utility in the IC folder (see

appendix)
• Firmware: The firmware version is coordinated with the

version of IC. IC will give a warning if the two don’t match
(in which case you should load the matching firmware version
from IC via Tools..Download firmware)

• Programs: When you are ready to run your program, use the
"Download" button to put your program onto the XBC.

© 1993-2007 KIPR 143

Gameboy Buttons

© 1993-2007 KIPR 144

The Basic GBA
L “shoulder” button R “shoulder” button

right button

left button

up button

down button

A button
(choose)

B button
(escape)

start button
select button

© 1993-2007 KIPR 145

The GBA
SP

L “shoulder” button
(under the hinge)

R “shoulder” button
(under the hinge)

right button

left button

up button

down button

A button
(choose)

B button
(escape)

start buttonselect button

back-light off/on button power indicator LED

recharge indicator LED

© 1993-2007 KIPR 146

XBC Buttons
(with Gameboy installed)

• With a Gameboy installed, the XBC has 6 buttons and one “D-
pad” (directional pad) which is actually just 4 buttons – thus
there are a total of 10 buttons on the XBC

• The start button only starts (or stops) the program loaded on
the XBC

• The select button moves you back and forth between the
program window and the menu window

• When in menu mode the other buttons have miscellaneous uses
(for example A usually selects that menu option and B moves
back to the prior menu, the up button moves up, down moves
down, …)

• The GBA SP backlight on/off button is not used by the XBC

© 1993-2007 KIPR 147

XBC Buttons & More

• In an IC program, the programmer can use 8 (of the 10)
XBC buttons – the only two that the programmer can NOT
use/access are the start and select buttons

• a_button(), b_button(), r_button(),
l_button(), up_button(), down_button(),
left_button(), right_button()
– All return 1 if currently pressed down, 0 otherwise

• Analog port 7 is reserved for battery voltage and the
function power_level()

© 1993-2007 KIPR 148

XBC Display Menus

© 1993-2007 KIPR 149

XBC Main Display
• The XBC menu is

navigated using
the up and down
buttons of the
direction pad (left
of display) and the
A button to select

Run downloaded
program Displays printf

Accesses vision menus

Save or restore persistent
state to memory (using
persistent variables)

© 1993-2007 KIPR 150

Console Display at Boot
• After starting

the XBC, use
the directional
pad to select
the IC Console,
which will have
a display
showing what
versions of the
firmware and
bitstream are
being used

Shows version of firmware
and bitstream that are
loaded

© 1993-2007 KIPR 151

XBC Status Display
• Pressing L & R buttons

(top edge of GBA) scroll
through three displays at
the bottom of the GBA
screen
– IC Status
– Sensor Status
– Motor Status
– Power & Servos

Status window

© 1993-2007 KIPR 152

XBC Sensor Status Display

Analog Port Numbers

Analog port values Digital port numbers (hex)
Background color indicates state

Use this
display to test
a plugged in
sensor to see
if its value
changes when
you
manipulate it!

© 1993-2007 KIPR 153

XBC Motor Status Display

Motor number

Motor speed (0-100)

Motor position

If you rotate
a motor
forward and
its position
counter
changes
negatively,
reverse your
motor plug!

© 1993-2007 KIPR 154

XBC Power & Servos Display

Servo number

Servo position
Seconds since XBC was booted

if less than 7V --
Past time to recharge!

Unlike
sensors and
DC motors,
servo motors
provide no
feedback, so
the position is
relevant only
when a servo
command is
executed

© 1993-2007 KIPR 155

Determine DC Motor Polarity for
Demobot

• Use the shoulder buttons to cycle the display to
the XBC Motor Status Display
– You want the motor position counter for each wheel to

increase when you turn the wheel forward
• If it does not, reverse the motor plug for the wheel

– You want the gripper to open when you rotate its motor
to increase the motor position counter

• Start with the gripper closed
• If it does not open when rotating to increase the counter,

reverse the plug

© 1993-2007 KIPR 156

Using Sensors

© 1993-2007 KIPR 157

Sensor Types

• Digital:
– Return a 0 or a 1
– Switches or bumpers are an example

(open: 0, or closed: 1)

• Analog:
– Sensor returns a continuum of values
– Processor digitizes results (8 bits give values of 0-255)
– XBC also has 12 bit analog functions
– e.g. light sensors

© 1993-2007 KIPR 158

• Detachable sensors use a keyed connector (2 wire or 3 wire)

– Analog sensors:
• Light (ports 2-6)
• IR reflectance (ports 2-6)

– Floating analog sensors:
• Optical rangefinder (ports 0-1)

– Digital sensors:
• Touch (ports 8-15)

– Special sensors:
• Ultrasonic rangefinder (sonar)

– (ports 8-15)
• XBC Camera

– (camera port on XBC)

Detachable Sensors

© 1993-2007 KIPR 159

• Analog sensor
• Connect to ports 2-6
• Access with library function analog12(port#)

– You can also use analog(port#) for lower resolution
• Low values (near 0) indicate bright light
• High values (near 4095 for analog12, 255 for analog)

indicate low light
• Sensor is somewhat directional and can be made more so

using black paper or tape or an opaque straw or lego to
shade extraneous light. Sensor can be attenuated by
placing paper in front.

Light Sensors

© 1993-2007 KIPR 160

• Connect to ports 2-6
• Access with library function analog12(port#)

– You can also use analog(port#) for lower
resolution (0-255)

• Low values (0) indicate bright light, light color, or
close proximity

• High values (4095) indicate low light, dark color,
or distance of several inches

• Sensor has a reflectance range of about 3 inches

IR Reflectance Sensor “Top Hat”

© 1993-2007 KIPR 161

IR Reflectance Sensors

Amount of reflected IR depends on surface
texture, color, and distance to surface

© 1993-2007 KIPR 162

• Floating analog sensor
• Connect to ports 0-1
• Access with library function analog12(port#)

– You can also use analog(port#) for lower resolution

• Low values (0) indicate large distance
• High values indicate distance approaching ~4 inches
• Range is 4-30 inches. Result is approximately 1/d2.

Objects closer than 4 inches will produce values
indistinguishable from objects farther away

Optical Rangefinder “ET”

© 1993-2007 KIPR 163

Optical Rangefinder

Focused IR Beam

Lens

Position Sensing Device (PSD)

(high value)

(low value)

(low value)

© 1993-2007 KIPR 164

• Timed analog sensor
• Connect: port 8-15
• Access with library

function sonar(port#)
• Returned value is distance

in mm to closest object in
field of view

• Range is approximately
30-2000mm

• No return (because objects
are too close or too far)
gives value of 32767

Ultrasonic Rangefinder (Sonar)

© 1993-2007 KIPR 165

Ultrasonic Sensors
• Puts out a short burst of

high frequency sound
• Listens for the echo
• Speed of sound is

~300mm/ms
• sonar() times the echo,

divides by two and
multiplies by speed of
sound

• The sonar field of view is
a 30o (3-dim) teardrop

sonar

Area of coverage

© 1993-2007 KIPR 166

Touch Sensors
• Digital sensor
• Connect to ports 8-15
• Access with library function
digital(port#)

• Three form factors in kit
• 1 indicates switch is closed
• 0 indicates switch is open
• These make good bumpers and

can be used for limit switches on
an actuator

© 1993-2007 KIPR 167

Motors & Servos

© 1993-2007 KIPR 168

DC Motors
• DC motors (gray cables

with 2 prong plugs) plug
into the XBC motor ports

• The XBC has 4 motor
ports number 0,1,2,3
– 0, 1 are on the right side
– 2, 3 are on the left side

© 1993-2007 KIPR 169

• DC motors with gray cable plug
directly into XBC motor ports

• If the motor position counter on the
Motor XBC Status Display decreases
when the motor is manually turned
in the forward direction, simply flip
the plug 180 degrees to correct

• The black motors have a high stall
torque of about 48 in-oz
– Each black motor has a servo horn

mounted to the motor shaft. Different
servo horns can be attached by removing
the screw in the motor shaft and lifting
off the old servo horn.

– Lego pieces can be attached to the servo
horns using either glue or screws. The
screwdriver included in your kit can be
used for this purpose (the screwdriver
cannot be used as part of a robot!)

DC Motors

© 1993-2007 KIPR 170

More DC Motors

• These motors have a LEGO axle
for mounting wheels or gears

• The white gear motors are a little
faster but have a little less torque
than the black gear motors

• The silver motors have no built in
gears. They can turn very fast, but
have low torque.

• Use LEGO gear trains to trade
speed for torque

© 1993-2007 KIPR 171

Ferrite Bead Installation on
White DC Motors

© 1993-2007 KIPR 172

EMI & CPU Problems
• The white Botball motors do not have EMI shielding the

way the other kit motors do
• It is possible that electrical and magnetic pulses from these

motors could cause data corruption in an XBC that was
very close to the motors

• In extreme cases, this could cause an XBC to crash when
the motor is in use

• Ferrite beads greatly reduce EMI interference caused noisy
sources such as unshielded motors

• The following slides show how to install the ferrite beads
on your white motors

© 1993-2007 KIPR 173

Parts
• Gather your two white

motors and two ferrite
beads

© 1993-2007 KIPR 174

Install the Bead
1. Slip the bead over the motor

connector
2. Then loop the connector

through a second time
3. Pull the wire snugly against

the bead
4. Repeat for the other Motor.
5. In the unlikely event that you

still have EMI problems in the
future, pull the wire through
for another loop

1

2

3

© 1993-2007 KIPR 175

Servo Motors

© 1993-2007 KIPR 176

Servos
• Servo motors (black-red-yellow cables

with 3 prong receptacle) plug into the
XBC servo ports

• The XBC has 4 servo ports numbered
0,1,2,3

• Plug-in order is yellow, red, black with
black toward the right when looking into
the camera

• The plugs for the servo ports are the pins
sticking out just to the left of the camera
on the XBC

© 1993-2007 KIPR 177

Position Servos
• Position servos are motors that are designed to rotate

to a specified position and hold it
• enable_servos();

– Activates all servo ports
• disable_servos();

– De-activates all servo ports
• set_servo_position(<s#>,<pos>);

– Rotates servo in the specified port to the specified position
– set_servo_position(2,123);

• Sets the position for servo port 2 to 123
• If servos are enabled, the servo in port 2 rotates to position 123

– Position range is 0-255
– You can preset a servo’s position before enabling servos
– Default position when servos are first enabled is 128

• get_servo_position(<s#>)
– Returns an int for the specified servo whose value is the current

position for which the servo is set
• Note: Servos may run up against their stops at low or high position values.

Giving a servo such a position command will suck power at an alarming rate!
• Note: Servos acting weird or not working is an indication the battery is low

© 1993-2007 KIPR 178

Example Servo Program
void main(){

enable_servos(); // turn servos on and
// rotate to default position (128)

printf("moving to 64\n");
set_servo_position(3,64); // rotate servo 3 to 64
sleep(2.0); // give plenty of time for servo to move
printf("moving to 200\n");
set_servo_position(3,200); // rotate servo 3 to 200
sleep(2.0);
printf("moving to 64\n");
set_servo_position(3,64); // rotate servo 3 back to 64
sleep(2.0);
disable_servos(); // turn servos off
printf("Done\n");

}

© 1993-2007 KIPR 179

XBC Reference Sheet

© 1993-2007 KIPR 180

XBC (v.3 w/GBA SP and Camera)

charge port

Servo Ports
(wire order Y|R|B)

USB Serial Connector
(when programming)

off
on

0

1

Floating
Analog (0-1)

Analog
Ports (2-6)

Digital
Ports (8-15)

Camera Port

Motor Ports
2

3
Motor Ports

Power Switch

R “shoulder” button
r_button()

A button (choose)

B button (escape)

a_button()

b_button()

L “shoulder” button
l_button()

right button

left button

up button

down button
down_button()

right_button()

left_button()

up_button()

start buttonselect button

Gameboy power

Screen back light off-on

© 1993-2007 KIPR 181

Testing Motors and Sensors on
the XBC

© 1993-2007 KIPR 182

You Can Use the Interaction
Window for Testing

• For example, to test a motor
– Plug the motor into a motor port
– Execute mav(<port-nmbr>, <vel>) in the interaction

window for the port you have selected
– Execute ao() to stop the motor
– Particularly useful for setting motor plug orientation

• Or, you can use the xbctest.ic in IC’s XBC
folder

© 1993-2007 KIPR 183

Testing Your XBC, Sensors & Motors
• Turn on your XBC and make sure the serial cable is connected
• Use settings menu in IC to switch controller to XBC
• Open xbctest.ic from IC’s XBC folder and download it
• Use the scroll down button to select Run xbctest.ic from the Gameboy screen
• Press the A button or the scroll right button to run the program
• Follow the onscreen instructions to menu through the motor, servo, sonar and vision

tests
• Connect and test 4 motors (connect to ports 0, 1, 2 and 3)
• Connect and test the servos (one at a time)
• Connect (one of ports 8 through 15) and test the sonar
• Connect and test the digital sensors (look at status screen)
• Connect and test the remaining analog sensors (be sure you have the right type of

sensors in the right ports) (look at the status screen)
– Note that the status screen reports the scaled analog function (0-255)

• Test the vision system, focus can be adjusted by gently turning the front of the lens

© 1993-2007 KIPR 184

Experiments with Demobot

© 1993-2007 KIPR 185

Mobile Robot Experiment (1)
• Plug a touch sensor into port 8 for a front bumper
• Plug a touch sensor into port 14 for a rear bumper
• You should already have the wheel (ports 0 and 1) and

gripper (port 2) DC motors plugged in, with correct
polarity

• You should already have the arm/shoulder servo plugged
into servo port 0 (verify polarity – black is -, red is +,
yellow is S)

• Take your ping pong program from day 1 and modify it
to run on this robot
– Hint: you will only need to check for a single front

and single rear sensor
– Hint: get rid of all rsim_ prefixes.

© 1993-2007 KIPR 186

Mobile Robot Experiment (2)

• Question: is reality as accurate as
simulation?

• Modify your square program from Day 1 so
that it will run on the XBC and demobot

• Mark where the robot moves.
• Compare the quality and accuracy of the

squares in simulation and reality

© 1993-2007 KIPR
187

Calibrating the Shoulder/Arm

• You should be able to raise and lower the arm freely until servos are
enabled

– In the interaction window enter

• set_servo_position(0,127)

– This instructs servo 0 to move to position 127, when the servo is enabled

• enable_servos()

– This powers on all of the servos.

– Servo 0 moves to the last position instructed (127)

• set_servo_position(0,100)

– Try different values to determine what value best raises the arm up (no motor
straining) and what value lowers it to the surface and no further

» Hint: use the up-arrow key to scroll the interaction window back to the
previously entered command, so you only have to change the number rather
than re-typing the whole command

– Write down these values!

© 1993-2007 KIPR
188

Calibrating the Gripper

• Close the gripper claw by manually rotating

its DC control motor

– In the interaction window enter

•clear_motor_position_counter()

– 0 becomes the motor position for gripper being closed!

•mtp(2,100)

– Try different values to determine what value best gives

you an open gripper claw (write these down!)

© 1993-2007 KIPR 189

Mobile Robot Experiment (3)
• Write functions to control the arm (no peeking

ahead until you’ve tried to do this)
• Now use these to do a task, such as

– Move some distance
– Turn some amount
– Move some more
– Open the claw and lower the arm
– Close the claw and raise the arm
– Return to where you started
– Lower the arm and open the claw to release whatever

you picked up

© 1993-2007 KIPR
190

Compare Your Solutions to These
int arms=0; // arm servo in S0
// servo positions for up and down
int up=10, down=100;
int clawm=2; // claw motor
long open=250L, closed=0L;
// claw(250L) opens claw(0L) closes

void arm_init() {
 arm(up); // initialize to up
 enable_servos();
}
void arm(int pos) {
 set_servo_position(arms,pos);
}
// manually close claw for claw_init
void claw_init() {
 clear_motor_position_counter(clawm);
}
void claw(long pos) {
 mtp(clawm,250,pos);
}

Example usage -

int mL=2, mR=0;
void main() {
 display_clear(); while(a_button());
 printf("BE SURE CLAW IS CLOSED\n");
 printf("press A when ready\n");
 while(!a_button()); // wait for press
 claw_init(); // claw must be closed
 arm_init(); // pre-calibrated up/down
 move(6.0); turn(-95.0); move(6.0);
 claw(open); arm(down); sleep(2.0);
 claw(closed); sleep(2.0);
 arm(up); sleep(2.0);
 turn(180.0); move(-6.0); . . .

(download these and try using

arm and claw in the interaction

window!)

© 1993-2007 KIPR 191

Mobile Robot Experiment (4)
• Copy the program color-line.ic, from your team CD onto

your hard disk
• Open the program in IC and then load it onto your robot
• Place the robot at one end of a strip of red tape
• Press start and follow the onscreen instructions

– They will tell you to press the rear bumper when you are ready for
it to move

• The robot should follow the red tape and stop when you
press the B button, or it gets near the end of the tape. Look
at the program and try and figure out how it works.

© 1993-2007 KIPR 192

Feedback and Control
• Bang bang control
• P-loops

© 1993-2007 KIPR 193

Using a Sonar in Bang-Bang
• Bang-Bang is a control scheme that uses extremes

– If the sensor reads too close go in reverse
– If the sensor reads too far go forward
– In some circumstances Bang-Bang can damage gear trains, motors

and motor drive electronics
– e.g.: int dir = 0; /* direction switch */

while(b_button()==0)
{

if (sonar(15) < 300) {
if (dir == 0) {

mav(1,-500); mav(-500); dir = 1;
}

}
else {

if (dir == 1) {
mav(1,500); mav(2,500); dir = 0;

}
}
sleep(.03); // give sonar time between pings

}

© 1993-2007 KIPR 194

Using a Sonar in P-Loop
P-Loop or proportional control is a control scheme that
adjusts the output proportionally to the changes in input

If the sensor reads close to the target distance move
slowly. If it is far away, move quickly.
e.g. int speed;

while(b_button()==0)
{

speed=10*(sonar(15)-300);
if (speed > 1000) speed=1000;
mav(1,speed); mav(2,speed);
sleep(.03);

}
Exercise: Take this code fragment and write the rest of the
main function to make the robot stay near distance 300.

© 1993-2007 KIPR 195

Exercise: Constant Distance
• Have a robot maintain a constant distance (about 25 cm)

from the object (your hand) in front of it
• When your hand moves towards the robot, the robot should

back away
• When your hand moves away from the robot, the robot

should go forwards
• Use a p-loop to control your robot’s velocity
• Question/Experiment: What happens if you move your

hand suddenly very close to the bot (less than three inches
from the sensor)?

© 1993-2007 KIPR 196

Botball Utilities
From the XBC Library

© 1993-2007 KIPR 197

Utilities for Botball
• The library file botball.ic contains special routines

to help you write your Botball programs
• In Botball robots start when signaled by a starting

light and have to stop 90 seconds later
• the function wait_for_light(<port>) runs

the calibration routine for the XBC with the light
sensor plugged into <port> and then waits for the
light to come on

• When using this function write:
#use "botball.ic"

at the top of your program file (before main)

© 1993-2007 KIPR 198

Timing for Botball
• When executed, the function

shut_down_in(<game_secs>);
starts a process that turns off all motors after
game_secs has elapsed and keeps any new commands
from being processed until the XBC is power cycled
(servo motors, if running, are turned off). You can
edit this function to leave servos powered (see the file
botball.ic in the lib/xbc directory).

• If you are not sure what your changes will do (or even
if you are) TEST multiple times before the tournament

Note: game_secs must be a float number (with a
decimal point)

© 1993-2007 KIPR 199

YOU MUST SHIELD YOUR
LIGHT SENSOR

• The table will be lit with 8 - 60 Watt replacement (800
lumen, 13 watt) compact fluorescent light bulbs in 9"
reflectors.

• Overhead lights from the game table will flood an unshielded
sensor rendering it incapable of seeing the starting light

• Light sensors only need a little light to work, and it should be
shielded from all extraneous sources

• Opaque objects stop light (e.g., foil, black electrical tape)
• Soda straws are not opaque; Printer paper is not opaque; Two

layers of printer paper are not opaque; A straw wrapped in
printer paper is not opaque.

© 1993-2007 KIPR 200

How to Shield a Light Sensor

No!!

Yes!

1 2

3

Wrap segment of plastic straw in tape

Slide straw over
light sensor
(leave a gap in
the front) and
tape in place

© 1993-2007 KIPR 201

Exercise:
Create A Botball Program

Have your Team Do this the First Week!!!

• Modify one of your challenge programs to use the
Botball utilities:
– Add the #use line to load the file botball.ic
– Add a light sensor to your robot and use the
wait_for_light() function to calibrate it

– Use the shut_down_in() function to turn your
robot off after 30 seconds

– Remember: In the real situation, the light sensor will
require shielding

© 1993-2007 KIPR 202

Color Vision System

© 1993-2007 KIPR 203

Color Vision System

• Color Space
• Finding color blobs in an image
• Trying out the vision system
• Making a color model

– On screen instructions
– Camera check with test program

• Tuning the camera
• Challenge exercises

© 1993-2007 KIPR 204

Color Selection Plane
Hue=0

Hue=360

Sat=0
Val=224

Sat=224
Val=224

Sat=224
Val=0

Note: 224 is the
range of values
the camera
pixels put out
in each of R, G
& B

© 1993-2007 KIPR 205

Finding Color Blobs in an Image

© 1993-2007 KIPR 206

Color Blobs
• For color tracking, a rectangular piece of the color

selection plane is selected. All of the pixels in the
image whose color falls within that piece are selected.
– The camera resolution using IC is 357x293 = 104,601

pixels
• Selected pixels that are contiguous are combined as

blobs
• Each blob has a size, position, number of pixels,

major and minor axis, etc.
• The blobs correspond to objects seen in the image that

are the desired color (as given by the specified piece
of the color selection plane).

© 1993-2007 KIPR 207

Color Models
• The XBC can segment the image using three

different pieces of the color selection plane (each is
called a color model) simultaneously

• It can track a number of blobs from each color
model

• It can display the video in any one of three ways
– Raw (live video)
– Processed (pixels not selected by a color model are dark)
– Combined (processed combined with raw show you can

see where the blobs are on the live video)

© 1993-2007 KIPR 208

More on Color Models
• A Color Model-HSV specifies a bounding box in the color

selection plane
• Moving either edge towards the center line constrains the range

of accepted color values to only include more vivid colors (i.e.
only accept things that are more like Astro Brights paper).

• If everything you want is being accepted but so is a lot of other
junk you don't want, move the corners closer to the center.
– Moving either edge away from the center of the selection plane

includes less vivid colors in the color model.
• Moving the left edge away from center includes colors that are closer

to pastel than what is currently accepted.
• Move the right edge away from center includes darker colors than

what is currently accepted.
– Moving the top and bottom edges up and down changes the range

of hues accepted by the model.

© 1993-2007 KIPR 209

Trying Out the Vision System

© 1993-2007 KIPR 210

Trying Out Color Vision (1)
1. Parts: XBC; White piece of paper; Solid colored object
2. Turn on XBC and select the Vision menu

(use the pad to scroll down, then press
the A button when the Vision menu is highlighted)

3. Select Camera Config and live video
• current values will be displayed

4. Point the camera at the white piece of paper
5. Press the Start button to initiate white balance calibration

1. “STARTING CALIBRATION” will print at the bottom of the screen
2. After a few seconds when it says “DONE” the calibration is complete and the

red/blue color temperature values are locked in.
3. If unsatisfied, retry calibration or experiment with turning AWB (Auto White

Balance) to 1 or 0 with the right and left direction pad buttons. While AWB=1
the red/blue values will react to what the camera sees, when AWB changes to 0
it locks in the red/blue values.

4. When satisfied, press B to go back to the menu.
5. To preserve the camera settings to still apply after reboot, select Flash Memory

under the Vision menu. Scroll right until Camera Config appears in the setting
slot. Then select Save to Flash and press A.

© 1993-2007 KIPR 211

Trying Out Color Vision (2)
1. Press the B button till you get to

the menu that has Live Video as its top item

2. Select Color Model and
then Restore to Default

3. Press B then select Live Video and see what the camera sees
• The A button cycles the display through live, processed, and combined

video
4. Press B and then select Processed video to see the image segmented

• The A button cycles the display through processed, combined, and live
video

5. Press B and then select Blob tracking to see how those segments are
broken into blobs

• The A button cycles the display through combined, live, and processed
video with bounding boxes for blob tracking displayed

• The color model for each bounding box is identified by the color of the
corners and center cross-hairs that mark the box (green, blue, and red
for 0, 1, and 2)

© 1993-2007 KIPR 212

Blob Tracking Views
Channel Legend

Channel 0 Blob 0
Bounding Box

Raw View Processed View

Combined View

Use the A button to
cycle through the
three types of views

© 1993-2007 KIPR 213

Onscreen Instructions
for setting color models

© 1993-2007 KIPR 214

Onscreen Instructions
for setting color models

© 1993-2007 KIPR 215

Trying Out Color Vision (3)
1. Press the B button and select Color Model and then Modify Model 0
2. Follow the onscreen instructions to modify the color model:

1. The start button chooses symmetric Move or Resize modes for the box
• indicated by M or R in upper right corner of the display

2. L & R buttons switch you to corner (upper left or lower right) move mode
• indicated by upper left or lower right corner highlighted
• only one side of the box moves, depending on the corner selected

3. The D-pad is used to Move the box, Resize the box, or move the corners
3. The A button cycles through live, processed, or combined video
4. Do training

1. Open up the S and V ranges by moving the side edges outwards
2. Open up the top and bottom edges as far as they go (MAX_HRANGE),
3. Move the whole range up and down until it includes what you want to accept.
4. Then close down the top and bottom edges until they're as close together as

they go before cutting out part of what you want to keep.
5. After you have good top and bottom settings, start moving the side edges

closer to the center until you have cut out everything you want to get rid of.

© 1993-2007 KIPR 216

Corner Modes
• L mode

– Selected by L button
– Directional pad moves left side of

bounding box to left or right and
top side up or down

– Identified by highlighted upper left
corner

• R mode
– Selected by R button
– Directional pad moves right side of

bounding box to left or right and
bottom side up or down

– Identified by highlighted lower right
corner

(note: this is a composite view; use the A button to cycle the display through
Raw, Processed, & Composite views when setting the color model)

Pixels being selected
by this model

© 1993-2007 KIPR 217

Move and Resize Modes
• Move mode (M)

– Selected by Start button (toggles
between M and R)

– Directional pad moves whole
bounding box to left or right and
the whole box up or down

– Identified by M on the display

• Resize mode (R)
– Selected by Start button (toggles

between M and R)
– Directional pad shrinks the

bounding box inward or outward
either horizontally or vertically

– Identified by R on the display

(note: this is a composite view; use the A button to cycle the display through
Raw, Processed, & Composite views when setting the color model)

© 1993-2007 KIPR 218

Camera Check

© 1993-2007 KIPR 219

XBC Camera Check
1. Create a color model for channel 0 that sees a red

screw driver
2. Load xbctest.ic onto your XBC
3. Run the program
4. Select the vision test
5. Select the correct channel/model to see red
6. Follow on screen directions to get data on the

blobs
7. If you like your model, save it to flash
8. For more info, see XBC Camera in IC Help

© 1993-2007 KIPR 220

Which Color Model?
• The XBC stores 3 channels of color (0, 1, 2)
• There are 3 models maintained for each channel:

1. The currently active model (the one you see in the
modify model menu)

2. The model in flash (you can save the currently
active model and camera settings using the save to
flash menu item or make them active by loading
from flash)

3. The default model and camera settings which are
made active by selecting restore to default

© 1993-2007 KIPR 221

Vision Library Functions

© 1993-2007 KIPR 222

Loading the Vision Library

• The vision library is a separate library in the
/lib/xbc folder named xbccamlib.ic

• If you haven’t changed the default file by
saving to another location, the vision library
is loaded by including in your program

#use "xbccamlib.ic"

– Otherwise you will need to include the full file
path to the library for #use to find it

© 1993-2007 KIPR 223

Initializing the Camera

• The camera functions will not work until
your program initializes the camera by
calling the init_camera() function
– If your program is using the camera, you

usually put this early in main()

© 1993-2007 KIPR 224

Vision Functions
• The normal use of the camera is for blob tracking
• Blob tracking functions use the active color models

you have established
• Color models are initialized from flash when you start the XBC

• There are vision functions for using a program to
access or alter the camera configuration (see IC help)
– For most purposes, you can accomplish all the camera

configuration that is necessary using the vision interface
accessed from the XBC menu display (i.e., using these
functions is for advanced users!)

© 1993-2007 KIPR 225

Color Tracking

• There are three channels numbered 0, 1, 2 for
processing color models
– In the original configuration the models are set up to

roughly track red/orange, yellow, and green
– “cooler” colors such as green and blue are hard for the

camera to track
– The camera field of view is treated as an x-y

(column,row) coordinate array
• The upper left corner has coordinates (0,0)
• The lower right corner has coordinates (356,292)
• The XBC display does not show the camera’s full field of view

x

y

© 1993-2007 KIPR 226

Color Tracking Functions
• To keep the camera data from overwhelming the XBC processor,

current camera tracking data is captured only when the
track_update() function is called
– Normally called prior to using other tracking functions

• The function track_count(<ch #>) is used to find out how many
blobs a channel currently has in view
– If the value is 0, the camera isn’t detecting any blobs for the channel
– The blobs are numbered starting from 0, with blob 0 being the largest blob

• track_size (<ch #>,<blob#>)
– gets the number of pixels in the blob
– maxes out (saturates) at 32,767 if the area gets that large

• track_confidence (<ch #>,<blob#>)
– gets the confidence for seeing the blob as a percentage of the blob pixel

area/bounding box area (range 0-100, low numbers bad, high numbers
good)

© 1993-2007 KIPR 227

Getting Blob Data
• track_x (<ch #>,<blob#>)

track_y (<ch #>,<blob#>)
– Gets the x coordinate (column) or y coordinate (row) of the centroid of the blob
– The total visual field has (x,y)=(0,0) as the upper left and (x,y)=(356,292) as

the lower right
• These give the limiting values for track_x and track_y

• track_bbox_left(<ch #>,<blob#>)
track_bbox_right (<ch #>,<blob#>)
– Gets the x coordinate of the leftmost pixel or rightmost pixel in the blob

• track_bbox_top(<ch #>,<blob#>)
track_bbox_bottom (<ch #>,<blob#>)
– Gets the y coordinate of the topmost pixel or bottommost pixel in the blob

• track_bbox_width(<ch #>,<blob#>)
track_bbox_height (<ch #>,<blob#>)
– Gets the width of the bounding box

• same as track_bbox_right - track_bbox_left
– Gets the height of the bounding box

• same as track_bbox_bottom - track_bbox_top
• There are additional tracking functions for reducing the processor load by

turning off unused channels, etc (see IC help)

© 1993-2007 KIPR 228

color-line.ic Program
#use "xbccamlib.ic"
// follow colored line, color in channel 0; stop if correct color not in view
void main() {

init_camera(); display_clear(); // initialize camera, clear display
printf("Point robot at red line\nPress rear bumper when ready\n ");
while(digital(14)==0) {} // wait for rear bumper press
display_clear();
while(b_button()==0) { // continue until B button pressed

track_update(); // update info from camera queue
// show (channel 0, blob 0) data: x position, y position; also blob count
display_set_xy(0,0); printf(" x=%d\n y=%d\n count=%d\n",

track_x(0, 0), track_y(0, 0), track_count(0));
if (track_count(0)>0) { // are there any blobs on channel 0?

// if largest (blob 0) is centered (x=176) move at 400 ticks/sec
// if off center, turn using speed proportional to 5*offset
// from blob’s centroid x position (given by track_x(0,0))

mav(3, 400+5*(track_x(0,0)-176)); // if blob is left slow m 3 (left)
mav(1, 400+5*(176-track_x(0,0))); // if the blob is right slow m 1 (right)

}
else { // there are no blobs being detected on channel 0!

ao(); // stop (until someone extends the line)
printf("Can't see the red line\n");
sleep(0.1); display_clear(); // sleep to get fresh data; clear the display

}
}

ao(); beep(); // stop motors, sound horn
display_clear(); printf("Program Exit.\n");

}

© 1993-2007 KIPR 229

Challenge Exercises
Vision

© 1993-2007 KIPR 230

Vision Challenges
• The next three slides have challenges for you to

implement.
• They are arranged in approximate order of

increasing difficulty
• All programs should start with
wait_for_light and timeout after a set time

• You will need to add a light sensor to your robot
to activate the robot with wait_for_light
– You can cover the sensor with your hand when the light

is supposed to be off

© 1993-2007 KIPR 231

Challenge 1

• Modify the example “color-line.ic” program (from
the CD) so that when your bot gets to/near the end
of the line it will turn and then follow the line
back to the start

• Break the problem into a main and two helper
functions
– One function follows a line until it cannot see it any

longer
– The other function turns around until it sees the line

while facing in the other direction

© 1993-2007 KIPR 232

Challenge 2

• Plug a servo into the XBC and mount a servo horn
that looks like a pointer (or tape a pencil to the
round horn already on the servo)

• put the servo next to the camera
• Write a program that has the pointer point to the

red screwdriver and “follows” the screwdriver as
it moves back and forth in front of the camera

© 1993-2007 KIPR 233

Challenge 3

• Red light/Green light: Have the robot move
forward when it sees green and stop when it sees
red/orange

• Extra challenge: go slow (or speed up if that is
how you behave) while it sees yellow

• Use the colored paper from your registration
envelope (but do not destroy that paper -- you’ll
need it later)

© 1993-2007 KIPR 234

Critical Things to Know if You
Don’t Want to Embarrass

Yourself at the Tournament

© 1993-2007 KIPR 235

Template for Tournament Code
/* load the Botball utilities */
#use "botball.ic"
/* Botball.ic includes the functions: wait_for_light(int port)

and shut_down_in(float seconds)
*/
void main()
{

wait_for_light(2); // light sensor in port 2
shut_down_in(89.9); // kill the robot after 89.9 seconds
my_botball_program(); // call the function that does everything

}

void my_botball_program()
{

/* my botball robot just beeps every 3 seconds */
while(b_button()==0){

beep();
sleep(3.0);

}
}

© 1993-2007 KIPR 236

YOU MUST SHIELD YOUR
LIGHT SENSOR

• The table will be lit with 8 - 60 Watt replacement (800
lumen, 13 watt) compact fluorescent light bulbs in 9"
reflectors.

• Overhead lights from the game table will flood an unshielded
sensor rendering it incapable of seeing the starting light

• Light sensors only need a little light to work, and it should be
shielded from all extraneous sources

• Opaque objects stop light (e.g., foil, black electrical tape)
• Soda straws are not opaque; Printer paper is not opaque; Two

layers of printer paper are not opaque; A straw wrapped in
printer paper is not opaque.

© 1993-2007 KIPR 237

Botball is an R&D Project

© 1993-2007 KIPR
238

Project Leadership

Leadership

Communication

Organization

PL

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
239

Project Leadership

Leadership

Communication

Organization

Keep the Team on Time

and on Track

PL

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
240

Project Leadership

Leadership

Communication

Organization

Keep the Team on Time

and on Track

PL

•Calendars

•Project Plans

•Time Lines

•To Do Lists

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
241

Project Leadership

Leadership

Communication

Organization

Keep the Team on Time

and on Track

PL

•Calendars -Post publicly in team space.

•Project Plans – 1 or 2 names per task.

•Time Lines – Post large in team space.

•To Do Lists – One per team mate.

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
242

Project Leadership

Leadership

Communication

Organization

Keep the Team on Time

and on Track

Have Team Climb Same Mountain

PL

•Calendars

•Project Plans

•Time Lines

•To Do Lists

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
243

Project Leadership

Leadership

Communication

Organization

Keep the Team on Time

and on Track

Have Team Climb Same Mountain

PL

•Calendars

•Project Plans

•Time Lines

•To Do Lists

•Common Hardware Diagram

•Common Software Diagram

•Wall Size Poster of Product

•Brainstorming Wall

•Wall Sized Process Model

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
244

Project Leadership

Leadership

Communication

Organization

Keep the Team on Time

and on Track

Have Team Climb Same Mountain

PL

•Calendars

•Project Plans

•Time Lines

•To Do Lists

•Common Hardware Diagram –Posted+updated on wall.

•Common Software Diagram –Posted+updated on wall.

•Wall Size Posters of Product/System/Goal

•Brainstorming Wall – Keep all ideas visible.

•Wall Sized Process Flow Diagram.

Engine
Dave 10/25

Gearbox
Ben 11/12

Wheels
Mark 10/5

Ignition
Gill 10/29

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
245

Project Leadership

Leadership

Communication

Organization

Keep the Team on Time

and on Track

Have Team Climb Same Mountain

PL

Keep Team Productive

•Calendars

•Project Plans

•Time Lines

•To Do Lists

•Common Hardware Diagram

•Common Software Diagram

•Wall Size Poster of Product

•Brainstorming Wall

•Wall Sized Process Model

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
246

Project Leadership

Leadership

Communication

Organization

Keep t

and on

Have Team C

PL

Keep Team Productive

•C

•P

•T

•T

•Common Ha

•Common So

•Wall Size Po

•Brainstormin

•Wall Sized P

Each Team member needs:

1. To know what they are doing matters.

2. To know on a timely basis how they are doing.

3. To get fair compensation for their work (e.g.,

credit attribution, chance to run robot, chance to

attend NCER, etc.)

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
247

Project Leadership

Leadership

Communication

Organization

Keep the Team on Time

and on Track

Have Team Climb Same Mountain

PL

Keep Team Productive

•Calendars

•Project Plans

•Time Lines

•To Do Lists

•Common Hardware Diagram

•Common Software Diagram

•Wall Size Poster of Product

•Brainstorming Wall

•Wall Sized Process Model

“Lead Don’t Manage”

Each Team member needs:

1. To know what they are

doing matters.

2. To know on a timely basis

how they are doing.

3. To get fair compensation

for their work.

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
248

Project Leadership

Leadership

Communication

Organization

Keep the Team on Time

and on Track

Have Team Climb Same Mountain

PL

Keep Team Productive

•Calendars

•Project Plans

•Time Lines

•To Do Lists

•Common Hardware Diagram

•Common Software Diagram

•Wall Size Poster of Product

•Brainstorming Wall

•Wall Sized Process Model

“Lead Don’t Manage”
•Delegate Decision Making

•Provide Tools and Time

•Hold Team to Deliver

•Call in Upper Management

•Lead by Example from the Front

Each Team member needs:

1. To know what they are

doing matters.

2. To know on a timely basis

how they are doing.

3. To get fair compensation

for their work.

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
249

Project Leadership

Leadership

Communication

Organization

Keep the

and on T

Have Team Clim

PL

Keep Team Productive

•Cal

•Pro

•Tim

•To

•Common Hard

•Common Softw

•Wall Size Post

•Brainstorming

•Wall Sized Pro

“Lead Don’t Manage”

•Delegate decision making to the teammate closest to the work to be done.

(**Don’t Micro-Manage***)

•Provide Team with the tools and time needed to do the tasks. (**Trust

them to do it right**)

•Hold Team (via honor and integrity) to deliver what they promise, when they

promise it. (**Treat Team as Peer Collaborators**)

•Call in Upper Management (Faculty Advisor, mentor) for help early. (** Don’t

try and solve every problem yourself & Don’t hide problems ***)

•Lead by example from the front. (**Don’t punish from the rear***)

Each Team member needs:

1. To know what they are doing matters.

2. To know on a timely basis how they are doing.

3. To get fair compensation for their work.

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR
250

Project Leadership

Leadership

Communication

Organization

Keep the Team on Time

and on Track

Have Team Climb Same Mountain

PL

Keep Team Productive

•Calendars

•Project Plans

•Time Lines

•To Do Lists

•Common Hardware Diagram

•Common Software Diagram

•Wall Size Poster of Product

•Brainstorming Wall

•Wall Sized Process Model

“Lead Don’t Manage”
•Delegate Decision Making

•Provide Tools and Time

•Hold Team to Deliver

•Call in Upper Management

•Lead by Example from the Front

Each Team member needs:

1. To know what they are

doing matters.

2. To know on a timely basis

how they are doing.

3. To get fair compensation

for their work.

Adapted from Dave Barrett: SCOPE project management slides © Olin College 10/6/2006

© 1993-2007 KIPR 251

File History & Comments
A Way to Promote Communication

/* simple.ic – (c) 2003 David Miller, KIPR */

/* History:
Modified 6/15/03 – shortened the initial comments &

changed the word program to function
in the printf text – dpm

Modified 6/16/03 – removed silly comments at end – dpm
*/

/* This program displays a simple character string
*/

void main()
{

printf("This is a C function\n"); // display the string
}

© 1993-2007 KIPR 252

Now Add the Design Process

• In addition to an organized team, you need a
process for the team to follow.

• The engineering design process can provide a
good model:

1. Define the problem through a list of requirements
2. Explore the solution space
3. Select a solution
4. Prototype and refine the solution

• Repeat 4 at increasing levels of fidelity

© 1993-2007 KIPR 253

Start with a task

© 1993-2007 KIPR 254

??

?

?

What are the requirements?

© 1993-2007 KIPR 255

fit in the start box

start when the light goes on

turn off all motors at the end of the round

don’t go onto the other side for the first 30 seconds

use only the parts supplied in the kit

no entanglement of the other robot

© 1993-2007 KIPR 256

Design Stages
• Once a problem/task has been defined, and the

requirements have been identified, then a design goes
through the following:

1. Conception
– create ideas come up with specific goals

2. Evaluation
– select the promising ideas and interesting goals
– Derive the design requirements--those unique to your selected idea

and goals.
3. Implementation

– Create a project plan with a schedule and task assignments.
1. Implement all of the parts; integrate them together; test; test; sleep;

test.

© 1993-2007 KIPR 257

• Look at the problem (both in text and graphics)
• Let it stew for some time
• Then start an idea generation exercise
• There are many different methods, e.g.:

– Systematic
• Examine past solutions
• Examine solutions to similar

problems

Conception

– Intuitive
• Brainstorming
• Brain Writing

© 1993-2007 KIPR 258

Brainstorming
1. formulate the task as a question “How can we .…?”
2. take a few minutes in silence to individually write down

ideas
3. keep your ideas short and snappy
4. each person reads out one idea
5. no criticism of ideas is allowed - reserve judgment -

crazy ideas welcome (THIS REQUIRES DISCIPLINE)
6. build on or combine the ideas of others to create

additional ideas
7. record ALL the ideas

© 1993-2007 KIPR 259

Brain Writing

1. Identify problem
2. Sit in circle
3. Each person silently generates an idea and writes

it down
4. Ideas are passed to the right
5. Person uses the idea they were passed and

expands on it or uses it as a primer for a new
idea

6. Repeat the process

© 1993-2007 KIPR 260

Idea generation creates the
space of what you can do

© 1993-2007 KIPR 261

Evaluation
• Go from many ideas to a few promising ideas
• Eliminate those that will not solve problem (clearly do not

meet the requirements)
• Eliminate those that clearly cannot work (violate laws of

physics)
• Eliminate those that cannot be done by your team (require

skills or time that is definitely not available)
• Use evaluation techniques (e.g., six hats) to help with

selection
• Use selection technique (e.g., multi-voting) to reach

consensus
• If there are several good ideas, all of which will work, vote

on the one that the team should pursue
• Do not pursue multiple solutions unless there are adequate

resources to complete them -- or unless a firm date to
descope to a single solution is agreed upon

© 1993-2007 KIPR 262

Your team’s goals will
limit what you should do

Decide what you want to do

© 1993-2007 KIPR 263

Create Concept Sketches of
Promising ideas

© 1993-2007 KIPR 264

Create Sketch Models of the Best
Concepts

© 1993-2007 KIPR 265

Perform a preliminary simulation

• Move sketch model as a puppet through the
motions and through the scenario

• Create a crude CAD model and perform a
kinematic and/or dynamic simulation

• Have team members act out the parts of the
robot to make sure the ideas make sense

• Simulation will help eliminate some ideas
and spark new ones

© 1993-2007 KIPR 266

Six Hats

• Group evaluation method
• Everyone wears each hat in

turn
• Only the one with the hat

can speak
• Comments are limited to

the focus area of the hat
currently being used in the
group

© 1993-2007 KIPR 267

Multi-Voting
1. Generate a numbered list of items
2. Combine similar items and renumber list
3. Give each member a number of votes equal to

about 1/3 of the number of (remaining) items on
the list (but not less than 2 votes)

4. Conduct voting round: each person can
distribute their votes in any combination across
the list

5. Eliminate items with the fewest votes
6. Repeat 3-5 until a single solution is the obvious

choice

© 1993-2007 KIPR 268

Implementation
• Before implementation, there needs to be team buy-in on

the selected solution
• Different pieces need to be assigned to different people
• Individuals or very small groups complete the pieces
• Keep a schedule to track progress -- update it as each piece

gets done
• Work on pieces in parallel
• Create interface agreements among workers so that the

pieces will fit together when they are completed
– e.g., Make a table of sensor and motor ports that shows what goes

where
• Use stand up meetings to keep all team members in the

loop

© 1993-2007 KIPR 269

Create a full experimental
prototype

• Do a first draft of the full system
– Mechanics
– Software
– Electronics

• Don’t worry about “polish” but include all major
functions

• Plan on making major modifications from the
lessons you learn from this experimental system

© 1993-2007 KIPR 270

Create a Final System

• Based on tests of the experimental system
• Incorporates changes and improvements
• There may be several experimental versions

before it reaches “final” state
• Allow enough time for at least two iterations
• It does not count as an iteration unless you have

tested it thoroughly under realistic conditions

© 1993-2007 KIPR 271

Time

S
ol

ut
io

n
S

pa
ce

Conception Evaluation Implementation

Simulation

© 1993-2007 KIPR 272

The Design Cycle

from http://www.catalyst.uq.edu.au/designsurfer/design_cycle.html

© 1993-2007 KIPR 273

Handy References
• NASA Robotics Alliance Project: XBC course

– http://robotics.nasa.gov/courses/summer06

• Gears
– http://www.kipr.org/curriculum/gears.html

• Tutorial on how Back EMF works:
– http://www.acroname.com/robotics/info/articles/back-emf/back-emf.html

• Navigation lessons & integrating Botball in a class
– http://www.botball.org/educational-resources/curriculum.php

• Good explanation of Multi-voting
– http://www.ca.uky.edu/agpsd/multivot.pdf

• More details on using 6 Hats (DeBono Hats)
– http://www.mindtools.com/pages/article/newTED_07.htm

© 1993-2007 KIPR 274

Appendices

© 1993-2007 KIPR 275

Additional Topics
(homework!!)

• Boolean expressions in C
• Selection: if and if-else (+ some programming “gotchas”)
• Repetition using for (an alternative to while), break statement
• Functions and #use
• Printing in place on the XBC
• Communication between functions
• #define for IC
• Variables and scope for IC
• Mixed expressions: casting
• Programming style
• XBC motor functions
• XBC motor examples
• Memory & arrays
• Uploading global arrays
• Line following using a reflectance sensor
• Camera example: turn in direction of arrow
• Processes
• Loading the bitstream using the Xport utility
• Loading firmware using the Xport utility
• XBC Camera extension cable
• Challenge Exercises

© 1993-2007 KIPR 276

Boolean Expressions in C

© 1993-2007 KIPR 277

Boolean Expressions
• Boolean expressions result in either

1 (true) or 0 (false)
• Boolean operators:

== (two equals signs together, not one)
<, <=, >, >= (the usual comparators)
!= (not equal)
|| (or), && (and)
! not

• The While statement uses boolean expressions:
while (<boolean expression>)

© 1993-2007 KIPR 278

Programming in IC
Selection using if-else

© 1993-2007 KIPR 279

• Syntax if (<TFcheck>) {statements}
• < TFcheck > is a boolean expression for testing whether or

not a test criteria is met
• The statements are skipped if the TFcheck is false

void main()
{

int j = -2;
if (j < 0) /* skip if >= 0 */
{

j = -j; /* change sign of x */
}
printf("magnitude is %d\n",j);

}

Conditional Execution
Making a Decision with if

© 1993-2007 KIPR 280

Gotcha (“=” instead of “==”)

• What we intended
void main()
{
int i = 2;
if (i == 1)
{
beep();

}
}

• What we did
void main()
{
int i = 2;
if (i = 1)
{
beep();

}
}

© 1993-2007 KIPR 281

Unintended “;” is a “gotcha”, too

void main()
{
int i = 2;
if (i == 1);
{

beep();
}

}

void main()
{
int i = 2;
if (i == 1)
{
beep();

}
}

What we
intended

© 1993-2007 KIPR 282

Either/Or Selection: if-else
• Syntax if (<TFcheck>){<statements for true case>}

else {<statements for false case>}
• If the <TFcheck> is true then {statements for true case} are selected
• If the <TFcheck> is false then {statements for false case} are selected

void main()
{

int reading;
reading = analog12(3);
if (reading < 1000) // select < 1000 case
{

printf("RED ALERT: %d\n",reading);
}
else // select >= 1000 case
{

printf("System normal\n");
}

}

© 1993-2007 KIPR 283

• Syntax recap: if (<TFcheck>) { …} else { …}

void main()
{

if(digital(15)==1) /* select "forward" case */
{

mav(3,500);
printf("Forward\n");

}
else /* select "reverse" case */
{

mav(3,-750);
printf("Reverse\n");

}
sleep(2.0); /* let motor run 2 secs */
off(3); /* stop motor */

}

IC: if (<sensor-test>) … else

© 1993-2007 KIPR 284

IC: Selection Nested in Loop
void main() {

int dir = 0; /* dir switch gives current direction */
while (b_button()==0) /* loop until b_button() */
{

if (a_button()==0) /* select "forward" case */
{

if (dir == 0) /* if going reverse, forward motor */
{
mav(3,500);
dir = 1; /* dir = 1 indicates going forward

}
printf("Forward\n");

}
else /* select "reverse" case */
{

if (dir == 1) /* if going forward, reverse motor */
{

mav(3,-250);
dir = 0; /* dir = 0 indicates going in reverse

}
printf("Reverse\n");

}
}
off(3); /* turn off motor */

}

© 1993-2007 KIPR 285

Programming in IC
Repetition using for,
break statement

© 1993-2007 KIPR 286

for Loops
• for loops incorporate the loop control initialization, the condition test, and

the loop control modification within one statement
• The syntax of a for loop is the following:

for(<expr-1>; <expr-2>; <expr-3>) {<statements>}
• The for loop construction is equivalent to the following while loop

construction:
<expr-1>; // loop control initialization
while (<expr-2>) { // condition test
<statements>
<expr-3>; // loop control modification

}
• Example:

Using for Using while
for (i=0; i<10; i=i+1){ i=0;

printf("%d\n",i); while(i<10) {
} printf("%d\n",i);

i=i+1;
}

© 1993-2007 KIPR 287

Ending a Loop Early: break

• Use of the break statement provides an early exit from a
while or a for loop.

void main(){
int i;
for(i=0; i<=100; i=i+1) {
beep(); sleep(.1); // beep once
if (b_button()) break;

// had enough? then stop
}

}

© 1993-2007 KIPR 288

Loop “Rule of Thumb”
(when to use a for-loop rather than while-loop)

• Use a for-loop when you know you want to execute
something up to X times (where X may be a constant or a
formula that can be executed at the start of the loop to
determine the exact number of times it will be executed)

• Use a while-loop when the loop may execute 0 or more
times but it is non-deterministic when the loop may end –
for example driving forward until you bump into
something.

© 1993-2007 KIPR 289

Programming in IC
++ and -- operators

© 1993-2007 KIPR 290

++ and -- Arithmetic Operations
• ++ and -- are “unary operators

– i++ is equivalent to i = i + 1
– i-- is equivalent to i = i - 1

• Useful with for loops
void main() { // print an X pattern on the display

int i;
display_clear();
for (i=0;i<14;i++) { // print the \ slash

display_set_xy(2*i,i);
printf("x");

}
for (i=13;i>=0;i--) { // print the / slash

display_set_xy(26 - 2*i,i);
printf("x");

}
}

© 1993-2007 KIPR 291

Programming in IC
Functions and #use

© 1993-2007 KIPR 292

IC: Writing your Own Functions
• In IC, click on New
• Enter a function; e.g.,

void pause()
{
printf ("press A when ready\n"); // A button
/* wait for A button */
while (a_button() == 0){};//wait for button press
while (a_button() == 1){};//wait for button release
printf ("Started\n");

}

• Do Save As and name the file “pause”
• Do download to send the function to the Board
• Note that the tab is labeled “pause.ic”
• Click on Tools..List functions to verify “pause” is present
• Try calling pause() from interaction window

© 1993-2007 KIPR 293

Variables Must Be Declared at
Beginning of Block

WRONG!

float circ_area(float r){
printf("area");
float pi = 3.141593;
return(pi * r * r);

}

RIGHT!

float circ_area(float r){
float pi = 3.141593;
printf("area");
return(pi * r * r);

}

© 1993-2007 KIPR 294

#use Preprocessor Statement
• #use is a preprocessor directive

– Preprocessor directives start in column 1 with the “#” symbol
• Purpose of #use

– Program blocks may be saved in multiple files
– Before IC can compile a user’s program, the IC preprocessor has to gather together all

of the program files
– The #use directive is needed to tell the preprocessor where to find files when multiple

files are being used
• Example

#use "globals.ic"
#use "pause.ic"
void main () { . . .

• WARNING!! Preprocessor directives are terminated by the end of the line, not a
semi-colon. Don’t put comments on a preprocessor directive's line (it will get
pulled in as part of the preprocessor command!).

© 1993-2007 KIPR 295

Using Functions to Repeat
• Beep any number of times

// load my pause function
#use "pause.ic"
void main() // this is executed when program starts
{

pause(); // wait for button to be pressed and released
printf("Beep 15 times\n"); // print message
repeat_beep(15); // call our beep with 15 as parameter
printf("Do it again, but now 30!!\n"); // print message
repeat_beep(30); // call our beep with 30

}

void repeat_beep(int numbeeps) // function is named repeat_beep
{

int num=1; /* declare & initialize counter */
while (num <= numbeeps) // loop while num is <= numbeeps
{

beep(); /* beep once */
num = num + 1; /* add one to the counter */

}
}

© 1993-2007 KIPR 296

Programming in IC
Printing in place

© 1993-2007 KIPR 297

Function for Print in Place
• Printing in place is a two step process using display_set_xy and

printf. You can write a function that combines these two actions.
void print(char text[], int row, int col) {

display_set_xy(col,row);
printf(text);

}
• Test this on the simulator in the interaction window using something

like
print("Botball",3,5);

– What happens if you make a mistake and use a row or column value that
is too large?

– What if you want to print a number rather than text?
– It can be tricky to build a library function that has general usefulness!

• You probably noticed that the first argument for the function
(text[]) has brackets and data type char. This is how you indicate
to IC that the argument holds a “string” (or array) of characters.

– Arrays are a topic to be covered elsewhere

© 1993-2007 KIPR 298

Printing in Place on the XBC
• The IC library for the XBC provides functions to take advantage of the

rectangular layout of the XBC display to allow printf to start from any position
on the display.

– The XBC display provides a 14 row, 28 column character area
• Rows are numbered 0 to 13, columns 0 to 27

– display_clear()
• Function to clear the display

– display_clear_at
• display_clear_at(3,5,7);

– erases 7 characters on row 5 starting at position 3
– display_set_xy

• display_set_xy(0,0);
– positions IC for the next printf to start from the upper left hand corner of the display

• display_set_xy(0,10);
– positions IC for the next printf to start from the left end of row number 10 (ie., the 11th row)

– display_get_xy
• display_get_xy(&col,&row);

– Returns in variables col and row the position for the next printf
– Seldom needed

0 - 270 -13

28

14

© 1993-2007 KIPR 299

Try it on the Simulator
• First execute the program

void main() {
display_clear();
display_set_xy(4,10);
printf("BALL");
sleep(3.0);
display_set_xy(1,9);
printf("BOT");

}
• Now from the simulator interaction window do something

like
{display_set_xy(9,11); printf("!!!!");}

© 1993-2007 KIPR 300

Program Flow
• When a program is run, statements execute in order from

one statement to the next (program flow)
• The program we did earlier illustrates this:

void main() {
display_clear();
display_set_xy(4,10);
printf("BALL");
sleep(3.0);
display_set_xy(1,9);
printf("BOT");

}

• Warning: entering l (ell) instead of 1 (one) is a common
“Gotcha”!
– Hard to spot, especially if you have a variable name l!

• C has constructions that allow you to modify the normal
program flow

© 1993-2007 KIPR 301

Communication Between
Functions

© 1993-2007 KIPR 302

• The print function
void print(char text[], int row, int col) {

display_set_xy(col,row);
printf(text);

}
– Arguments must use the type specified for each parameter

• Other functions communicate with the print function by
calling it, supplying a value (of the correct type) for each
argument; e.g.,
– print("Botball",3,5);

Communicating Using Parameters

text string, integer, integer

© 1993-2007 KIPR 303

Communicating Using Global
Variables

• Global variables provide means for sharing data among functions
int left_motor = 2, right_motor = 0; // globals
void ahead_full() {
fd(left_motor); fd(right_motor);

}
void reverse_full() {
bk(left_motor); bk(right_motor);

}
– If you decide to move the left motor to port 3, assuming you always use

the global variable to identify the left motor port, simply changing the
value of the global variable’s definition fixes all references that are for the
left motor port.
int left_motor = 3, right_motor=0; // globals
. . .

© 1993-2007 KIPR 304

Communicating Using Global
Variables - Flags

• Global variables provide means for flagging an action’s completion
#use "pause.ic"
int flag = 0; // global to flag if a function has printed
void main() {
display_clear(); pause(); printf("\n\n"); // open some space
printb(); printg();
if (flag == 0) printf("(no one was here)\n");
printf("\nDONE\n");

}
void printb() {

if ((flag == 0) && random(2)) { // if no one has printed maybe I will
printf("BotGuy was here\n");
flag = 1; // change flag to let everyone know I’ve printed

}
}
void printg() {

if ((flag == 0) && random(2)) { // if no one has printed maybe I will
printf("BotGal was here\n");
flag = 1; // change flag to let everyone know I’ve printed

}
}

• random(int x) is a library function returning a random integer between 0
and x-1, inclusive
– random(2) will randomly be either 0 or 1

© 1993-2007 KIPR 305

Programming in IC
#define for IC

© 1993-2007 KIPR 306

#define Preprocessor Statement
• Purpose of #define

– Equate a meaningful name to repeatedly encountered text
• #define READING analog(3)

– Before compiling, the preprocessor replaces all occurrences of READING
with analog(3)

– eg.
if (READING < 30) { . . .

is equivalent to
if (analog(3) < 30) { . . .

– May reduce overhead (see the IC on-line programmer reference
manual)

• Has a limited macro capability
• In IC #define affects all code loaded from #use

© 1993-2007 KIPR 307

Programming in IC
Variables and Scope

© 1993-2007 KIPR 308

Variable Scope
• Your area and circumference functions probably look like

this
float circ_area(float r) {

float pi = 3.141593; // approx value of pi
return(pi * r * r);

}
float circ_circum(float r) {

float pi = 3.141593; // approx value of pi
return(2.0 * pi * r);

}

• Is it necessary to repeat the definition of pi?
– Answer: as it stands, yes
– A variable’s scope does not extend beyond the boundaries of the

block in which it is declared

© 1993-2007 KIPR 309

Using Global Variables for
Constants

• If the (approximate) value for the constant π is stored in a global
variable pi, its definition isn’t needed in functions that use it

float pi = 3.141593; // approx value of pi
float circ_area(float r) {

return(pi * r * r);
}
float circ_circum(float r) {

return(2.0 * pi * r);
}

– pi is global since its specification is outside of all functions
– circ_area and circ_circum use the global variable pi in their

calculations
• Global variables should be declared at the beginning of the program

file
• Other typical constants are motor and sensor port numbers, motor

power, and servo positions

© 1993-2007 KIPR 310

Determining a Variable’s Scope

• Each block is like a one-
way mirror
– You can’t look in to

locate a variable
– You can look out to

locate a variable
• The most local version

is the one used
• If not found all the

way out to the global
level, you have an
error!

• Global variables provide
the means for interprocess
communication

int imaglobal;
void f1()
{

int imalocal, imalocal2;
//This will work
imalocal2=imalocal+imaglobal;

}

void f2()
{

//error: undefined imalocal2
imaglobal=imalocal2;

}

© 1993-2007 KIPR 311

Super Ninja Scoping

• Avoid this situation, use
unique variable names!!

int x,w;

(){int x,y,z;void main

int fn (int z){

{int x;

{w=x+1;

}

x=x+1;
}

int y;

x=x+y+z+w;

}

}

global
scope

scope of
main

scope of
function fn

© 1993-2007 KIPR 312

Programming in IC
Mixed Expressions - Casting

© 1993-2007 KIPR 313

Mixed Expressions in C: Casting
• All of the operands in an expression (in IC) must be of the same data

type.
• There is a special (unary) operator known as the cast operator which

can be used to “coerce” its operand into a different data type (thus
allowing “mixed” expressions).
– For example, if you have an integer variable r and want to calculate x=2πr

your program code would need to be similar to:
int r;
float x, pi=3.1416;
x = 2.0 * pi * (float)r

– r has been cast to a (temporary) floating point location in the appropriate
format so it can be used in the computation of 2πr

• An expression involving casting can become quite complicated.
– For example,

(int) ((float) mseconds() / 1000.0 * range) + offset;
– Two cast operators are used – (int) and (float)
– What must the type of range and offset be, respectively?

© 1993-2007 KIPR 314

Programming in IC
Programming Style

© 1993-2007 KIPR 315

Program Style: Commenting

/* simple.ic -(c) 2003 David Miller, KIPR */
/* This program displays a simple character string

-- It is a good idea to start each function with a
comment that explains what the function does --

[this comment and the previous one are in multi-line form] */
void main()
{

printf("This is a C program\n"); // display the string
} // end of main [this comment and the previous one are in-line]
/* Hmm ... the last in-line comment is pretty superfluous! */

• Explanatory comments
– Can (and should) be added to a program to assist in understanding it later
– Do not affect the size of the compiled program on the XBC

• Syntax
– In-line form: // comment text

• The comment ends when a new line is started
– Multi-line form: /* comment text */

• The comment starts with an initial “/*” and continues until “*/” is encountered
• Example:

© 1993-2007 KIPR 316

File History & Comments
/* simple.ic – (c) 2003 David Miller, KIPR */

/* History:
Modified 6/15/03 – shortened the initial comments &

changed the word program to function
in the printf text – dpm

Modified 6/16/03 – removed silly comments at end – dpm
*/

/* This program displays a simple character string */
void main()
{

printf("This is a C function\n"); // display the string
}

© 1993-2007 KIPR 317

Program Style: Indentation
• C ignores most white space (spaces, returns, tabs, blank

lines)
• Indenting C program text helps to bring out the structure of

your program – this is an aspect of programming style for
improving readability
– Uniformly indent program text within each program block

• Start a new indentation after each ‘{‘
• Shift indentation back to left after each ‘}’

– Indent the second line of a single statement (exception: any added
white space inside a quoted string will print!)

• IC’s built in editor does most indentation for you!
– Programs are automatically indented when loaded
– The IC edit menu provides commands for indenting your text

without saving and reloading

© 1993-2007 KIPR 318

Syntax and Semantics
• C syntax is prescribed by a formal grammar that

provides the construction “rules” for C programs
• C semantics determine the interpretation of a

statement that is syntactically OK
– a = b - c;

is interpreted to mean “subtract the contents of variable c from
those of variable b, storing the result in variable a”.

– Note that C attempts to “do what we expect”; i.e., in the
above case, subtract c from b, not the other way around

• Fixing program semantics is the major part of the
exercise programmers call “debugging”

© 1993-2007 KIPR 319

XBC Motor Functions

© 1993-2007 KIPR 320

How do you connect motors to
computers?

• Computers operate at constant voltage and very
low current

• Motors draw high current and their speed and
direction depends on the voltage

• Robot controllers use:
– H-Bridge circuit to handle current and direction
– PWM to control speed

© 1993-2007 KIPR 321

H-Bridge
Separate Logic Current from Motor Current

+

-

+ V -

SF1

SR1

SR2

SF2

Motor

Pulse On

© 1993-2007 KIPR 322

H-Bridge (reversed)
Separate Logic Current from Motor Current

+

-

- V +

SF1

SR1

SR2

SF2

Motor

Pulse On

© 1993-2007 KIPR 323

Pulse Width Modulation (PWM)
• Pulse motor at fixed frequency

– Maintains voltage level supplied to motor
– Duty cycle governs speed

© 1993-2007 KIPR 324

• Black gear motors resemble servos -- but they are not
(identify by gray cable color)

• Other motors (white & silver) also have gray cables
• Use Motor channels 0, 1, 2 & 3
• Full Forward PWM: fd(3);
• Full Reverse PWM: bk(3);
• 2/3 Reverse PWM: motor(3,-66);

– On XBC this means run the motor in reverse at 66% scaled duty cycle

• Turn off motor: off(3);
• Turn off all motors: ao();

DC Motors - PWM

© 1993-2007 KIPR 325

Back EMF

• XBC can measure
EMF generated
back from spinning
motor

• BEMF is
proportional to
actual motor speed

from acroname.com

© 1993-2007 KIPR 326

BEMF Commands (1)
• clear_motor_position_counter(3)

– This clears the position counter for motor 3 to be 0
• get_motor_position_counter(3)

– This returns a long integer which is the values of the position
counter for motor 3

• set_motor_position_counter(3,200L)
– This sets the position counter for motor 3 to the long value 200.

This function is rarely used -- usually the only value you want to
set a counter to is 0, which is best done using
clear_motor_position_counter

© 1993-2007 KIPR 327

BEMF Commands (2)
• move_at_velocity(3,123)

– This will try and move motor 3 forward at 123 ticks per second. If the
motor velocity is affected by outside forces, the duty cycle of the PWM
being sent to the motor will be changed as needed to try and keep the
motor velocity will be changed the clears the position counter for motor 3
to be 0

– Note that velocity values are integers between -1000 and 1000
– Note that this command is terminated by any other PWM or BEMF

command that moves this motor.
– Note that performing a set_motor_position_counter or a

clear_motor_position_counter while move_at_velocity is
active might cause erratic behavior.

• mav(3,123)
– This is shorthand way of doing move_at_velocity

© 1993-2007 KIPR 328

BEMF Commands (3)
• move_relative_position(3,123,-369L)

– This will try and move motor 3 backwards at 123 ticks per second until it has moved
369 ticks behind where it was when the commands was issued. The second argument
(123 in the example) is a speed, not a velocity. The third argument is a long
corresponding to the distance to move. The sign of the position indicates whether or
not the motor should turn forwards or backwards.

– Note that speed values are integers between 0 and 1000
– Note that this command does not block but takes time (the example values should take

about 3 seconds). This command will finish when the destination position is reached or
will be terminated early by any other PWM or BEMF command that moves this motor
before the goal is reached.

– Note that performing a set_motor_position_counter or a
clear_motor_position_counter while move_relative_position is
active might cause erratic behavior.

• mrp(3,123,-369L)
– This is shorthand way of doing move_relative_position

© 1993-2007 KIPR 329

BEMF Commands (4)
• move_to_position(3,123,-369L)

– This will try and move motor 3 in whichever direction is needed at 123 ticks per second
until the motor counter has reached -369. The second argument (123 in the example) is
a speed, not a velocity. The third argument is a long corresponding to the goal
position as specified by the motor counter.

– The sign of the position does not indicate the direction of movement. Movement
direction is automatically determined by the sign of goal position minus current
position.

– Note that speed values are integers between 0 and 1000
– Note that this command does not block but takes time (the time is roughly the

difference between the goal and current positions divided by the speed). This command
will finish when the destination position is reached or will be terminated early by any
other PWM or BEMF command that moves this motor before the goal is reached.

– Note that performing a set_motor_position_counter or a
clear_motor_position_counter while move_relative_position is
active might cause erratic behavior.

• mtp(3,123,-369L)
– This is shorthand way of doing move_to_position

© 1993-2007 KIPR 330

BEMF Commands (5)
• get_motor_done(3)

– This function returns 0 if a BEMF command is in progress on motor 3 and 1 otherwise
– If a motor is moving under velocity control (e.g., mav) then get_motor_done will return 0 until

that motor command is terminated
– If a motor is moving under position control (e.g., mrp or mtp) then get_motor_done will

return 0 until that motor command is terminated or the motor reaches the goal position.
– If a motor is moving under PWM control (e.g., fd, bk or motor) then get_motor_done will

return 1
• block_motor_done(3)

– This function blocks (i.e., your program will not go onto the next statement) until the currently
executing BEMF motor command terminates.

– WARNING! If the robot is stalled before getting to where you told it to move, this function will
keep the rest of your program from running indefinitely

• bmd(3)
– This is shorthand way of doing block_motor_done
– If a bmd(3) immediately follows a mrp(3,500,3000L) then the bmd command will block until

the motor has moved all 3000 ticks (about 6 seconds for this example)
– If a bmd(3) immediately follows a mav(3,123) then the bmd will not terminate (unless killed

by another process) and your program will hang with the motor running

© 1993-2007 KIPR 331

BEMF Commands (6)
• freeze(3)

– This function immediately stops the motor then tries to keep the motor at its
current position moving at zero velocity then off in that it actively powers
the motor to stay where it is. It will resist backdriving. The motor may drift
slowly due to BEMF errors.

– This function uses power
– freeze will continue to control the motor until it is terminated by another

motor command.

© 1993-2007 KIPR 332

XBC Motor Examples

© 1993-2007 KIPR 333

XBC Motor Examples (1)

/* This function moves the motor 2 2000 ticks at a
speed of 500 ticks per second. This function
will take about four seconds to terminate

*/
void move2000ticks()
{

mrp(2,500,2000L);
bmd(2);

}

© 1993-2007 KIPR 334

XBC Motor Examples (2)

/* This function moves the motor 2000 ticks at a
speed of 500 ticks per second. This function
will take about four seconds to terminate unless
digital(15) returns 1 first, in which case the
motor will immediately stop and the function will
return

*/
void move2000ticks_bump()
{

mrp(2,500,2000L);
while(!get_motor_done(2) && !digital(15)){}
off(2); //only needed if digital(15) is hit

}

© 1993-2007 KIPR 335

XBC Motor Examples (3)

/* This function moves the motor forward 3300 ticks
(about 3 revs) and then moves it backwards the
same amount

*/
void back_and_forth_three()
{

mrp(2,500,3300L);
bmd(2); // wait for mrp to finish moving
mrp(2,500,-3300L);
bmd(2); // wait for mrp to finish moving

}

© 1993-2007 KIPR 336

XBC Motor Examples (4)

/* This is a GOTCHA!!!!!!
This function will only turn backwards about
3 revs (it will never turn forwards) because
there is no delay between the forward and the
backwards mrp commands, so the first mrp command
is immediately overridden by the second mrp

*/
void back_and_forth_three()
{

mrp(2,500,3300L); // start going forward
mrp(2,500,-3300L); // cancel that, go backwards
bmd(2); // wait for mrp to finish moving

}

© 1993-2007 KIPR 337

XBC Motor Examples (5)
/* This function moves the motor forward at full

speed for 5 seconds, prints out the distance
traveled and then runs the motor in
reverse at 100 ticks/sec the exact same amount

*/
void back_and_forth_the_same_dist()
{

// clear motor counter (set to 0)
clear_motor_position_counter(2);
mav(2,1000); // turn forward at full speed
sleep(5.0); // keep turning for 5 secs
off(2); // turn the motor off
printf("dist=%l\n",�

get_motor_position_counter(2));
mtp(2,100,0L); // move back to position 0
bmd(2); // wait for mtp to finish moving

}

© 1993-2007 KIPR 338

XBC Motor Examples (6)
/* This function takes a float as argument and turns the bot

clockwise that much in place. Assume wheel radius is 50mm, left
and right wheels are 200mm apart, left wheel is on motor 1
and right wheel is on motor 2 and one wheel rotation is 2000 ticks

*/
void rotate_bot(float turns)
{

float half_width, radius, pi, ticks_per_robot_rev;
float ticks_per_wheel_rev, robot_rev_circum, wheel_circum;
long ticks_to_turn;
//put in pre-defined values
half_width=100.; radius=50.; pi=3.1416; ticks_per_wheel_rev=2000.;
//calculate circumferences and ticks
wheel_circum=pi*radius*2.0;
robot_rev_circum=half_width*pi*2.0;
ticks_per_robot_rev=

ticks_per_wheel_rev*robot_rev_circum/wheel_circum;
ticks_to_turn=(long)(turns*ticks_per_robot_rev);
mrp(1,400,ticks_to_turn); //move left motor forward
mrp(3,400,-ticks_to_turn); //move right motor backwards
bmd(1); bmd(3); //wait for both motors to complete moves

}

© 1993-2007 KIPR 339

Computer Memory, Arrays

© 1993-2007 KIPR 340

Computer Memory

void main()
{

float sqrt_2=1.41421;
int m_speed;
long r_time=123456789;
// all of my code

}

© 1993-2007 KIPR 341

Arrays
• What is an array?

– Contiguous blocks of memory, all of the same type
• Each block of memory is an array cell

– Predetermined in size at compile time
• The IC function _array_size(<name_of_array>)

can be used to determine the number of cells in the array

© 1993-2007 KIPR 342

Declaring Array Variables
Syntax:

<data-type> <var-name>[<size>];
or
<data-type> <var-name>[<size>] = { <initial-data> };

• Examples
– int BBdata[12];
– int sensor[3] = {1, 2, 3};

• Arrays are zero-indexed and must be accessed one element at a time
using the array [] subscript operator.

• Example
– printf ("%d %d %d\n", sensor[0], sensor[1],

sensor[2]);
• Be very careful not to go out of the array bounds (otherwise a system

error occurs and the processor crashes/stops).

© 1993-2007 KIPR 343

Arrays in Memory
void main()
{

int my_arr[4];
int idx;
idx=0;
while(idx < 4){

my_arr[idx]=idx*idx;
idx++;

// rest of my code
}

© 1993-2007 KIPR 344

Loops with Array
void main()
{

int iArray[10]; // make an array of 10 cells
int i;
for(i = 0; i < 10; i++) // fill it with values
{

iArray[i] = (i + 1) * 10;
}
printf("Size of array: %d\n", _array_size(iArray));
for(i = 0; i < 10; i++) // print out the values that

// were filled in
{

printf("%d ", iArray[i]);
}

}

Output:
Size of array: 10
10 20 30 40 50 60 70 80 90 100

© 1993-2007 KIPR 345

Multidimensional Arrays

• What is a Multidimensional Array?
– Arrays that go in multiple directions
– Example:

• Matrix
• Cube Storage

– A multidimensional array is an array of arrays
Example:

int a_matrix[3][10];
is an array having 3 cells, each of which is an array of 10 integers

– Accessed the same way as an array, with one added
level of reference

© 1993-2007 KIPR 346

Looping Thru a 2D Array
void main()
{

int i2DArray[2][10]; // make an array of 2 cells, each of
// which is a 10 cell array

int i,j;
for(i = 0; i < 2; i++) // iterate through the

// 2 cell array (each cell is a 10 cell array)
{

for(j = 0; j < 3; j++) // iterate through the
// 1st 3 in each 10 cell array

{
i2DArray[i][j] = (i+1) * (j+1);
printf("%d ", i2DArray[i][j]);

}
}

}

Output:

1 2 3 2 4 6

© 1993-2007 KIPR 347

Global Arrays

• Arrays can be global just like other data
types

• You can read or modify global arrays using
the interaction window

• Global arrays maintain their value after the
program has stopped running

© 1993-2007 KIPR 348

Uploading Global Arrays

© 1993-2007 KIPR 349

Uploading Global Arrays

• Global arrays are still in memory after the
program exits
– IC doesn’t clear the stack until next execution of

program entry point

• Use “Upload Array” on tools menu in order to
upload an array in text or Excel format

• You can also list global variables, functions, etc…

© 1993-2007 KIPR 350

Programming Example
• Create a global array:

int sensors[200][2];
• Write a program that will loop through the rows of the array and put

the current sonar value in sensors[j][0] and the ET sensor value
in sensors[j][1].

• Attach the sensors to the board, run the program
• Upload the array
• Paste the data in Excel and chart the data
• Compare what values of the ET sensor correspond to distances as

measured by the sonar

© 1993-2007 KIPR 351

ET vs Sonar
#use "pause.ic" /* load pause function */
int sensors[200][2]; //data array

void main()
{

int idx;
pause();
for(idx=0; idx<200; idx++) // start the loop

{
sensors[idx][0]=analog(0); // ET sensor on XBC
sensors[idx][1]=sonar(15); // sonar on XBC
sleep(0.05);

} // end the loop
beep();

}

© 1993-2007 KIPR 352

Line Following

© 1993-2007 KIPR 353

Line Following (if time permits)
Follow the left edge
of a black line

Attach a top hat
reflectance sensor
to the front of your
robot and have it
point at the ground

sense dark?
turn left

sense bright?
turn right

© 1993-2007 KIPR 354

Line Following (in English)
• Human: Aim the robot along the line with the sensor

centered on the line (so it is seeing black). Press start or
A to start; press the stop or B button to stop

• Use top hat sensor
• Program: measure the light sensor on black

– store this measurement in the variable named dark
– while the stop button is not pressed

• if the light sensor reads less dark (i.e., something brighter is
less than dark, perhaps dark-10?), then turn right (left
tread forward, right stopped)

• otherwise turn left

Exercise: write the code to do this and run it on your robot

© 1993-2007 KIPR 355

Example User Interface
/* This main function demonstrates some nice features of having the

robot wait until it is in the right place and the user is ready,
before actually starting to move. The functions turn_right and
turn_left are left as an exercise */

void main(){
int black_line; // place to store best sensor value of blk line
while(a_button()==0) { // tell user what to do, repeatedly

black_line = analog(6); // read blk and display it; wait for Strt
printf("Robot on Blk=%d A if ready\n", black_line);
sleep(.05); // wait briefly to stabilize display
}
printf("Press Bwhen ready to end\n"); // so user knows what
while(b_button()==0) { // to do to stop

if(analog(6)< black_line - 15) {
turn_left(); // call the function to turn the robot

} // back towards the black line (You write this!)
else {

turn_right(); // turn the robot away from the line
}

}
ao(); // make sure all of the motors are off
printf("All done\n"); // let the user know you are done

}

© 1993-2007 KIPR 356

Camera Example
Turn in Direction of Arrow

© 1993-2007 KIPR 357

// spin 360 degree in direction arrow points
// load the vision library
#use "xbccamlib.ic"
// load miscellaneous routines
// turn function defined earlier
#use "pause.ic" // defined earlier
#use "print.ic" // defined earlier
#use "turn.ic" // defined earlier
void main() {

int distL, distR;
init_camera(); display_clear(); sleep(1.);
pause(); display_clear();
while(!b_button()){ // exit with B button

track_update(); // get fresh track data
if(track_count(0)>0 && track_size(0,0) > 100) { // big enough

distL = track_x(0,0)- track_bbox_left(0,0);
distR = track_bbox_right(0,0)- track_x(0,0);
if (distR > distL) // points left
{print(1,5,"Turning left "); turn(360.0);}

if (distL > distR) // points right
{print(1,5,"Turning right "); turn(-360.0);}

if (distL == distR) // don’t see orange
print(1,5, "Nothing there");

} // loop when turn is done (or if nothing there)
}
printf("\n\nDONE\n");

}

Example Using XBC Camera Functions
Turn in Direction of Arrow

distL distR

© 1993-2007 KIPR 358

Processes

© 1993-2007 KIPR 359

IC: Processes
• IC functions can be run as processes operating in parallel (along with

main)
– The computer processor is actually shared among the active

processes
– main is always an active process
– Each process, in turn, gets a slice of processing time (5ms)

• A process, once started, continues until it has received enough
processing time to finish (or until it is “killed” by another process)

• Global variables are used for interprocess communications

© 1993-2007 KIPR 360

IC: Functions vs. Processes
• Functions are called sequentially
• Processes can be run simultaneously

– start_process(function-call);
• returns the process-id
• processes halt when function exits or parent process exits

– processes can be halted by using
kill_process(process_id);

• hog_processor(); allows a process to take over the CPU for an
additional 250 milliseconds, cancelled only if the process finishes or
defers

• defer(); causes process to give up the rest of its time slice until
next time

© 1993-2007 KIPR
361

IC: Process Example
#use "pause.ic"

int done; /* global variable

 for interprocess communication */

void main()

{

 pause();

 done=0;

 start_process (ao_when_stop());

 while (!done){

. . . more code (involving motor operation) . . .

 }

}

void ao_when_stop()

{

 while (b_button() == 0); /* wait for B button */

 done=1; /* signal other processes */

 ao(); /* stop all motors */

}

© 1993-2007 KIPR
362

Simple Process Example

#use "pause.ic"
int done; /* global variable for interprocess communication */
void main() {
 pause();
 done = 0;
 start_process (ao_when_stop());
 while (done == 0) { /* loop until stop */
 motorav(3,500);
 sleep(5.0);
 if (!done) {
 mav(3,-500);
 sleep(5.0);
 }
 }
}
void ao_when_stop() /* stops motors at button press even if
 main function is in middle of sleep

statement */
{ /* wait for stop signal */
 while ((a_button() == 0) && (done == 0));
 done = 1; /* signal other processes */
 ao(); /* stop all motors immediately*/
}

© 1993-2007 KIPR 363

Exercise
• Look at the file processtest.ic
• Load the program into your XBC
• Run the program and press the L button to see

several processes in action
• Read the program comments and code to see how to

manage multiple processes
• The actual code for the 5 processes are in the file

processesforpt.ic which is automatically loaded by a
#use

© 1993-2007 KIPR 364

Loading the Bitstream Using the
Xport Utility

© 1993-2007 KIPR 365

Bits: Soft & Firm

• The XBC computes using the CPU from the
Gameboy and an FPGA in the Xport (small board
that plugs into the Gameboy)

• In order for your XBC to do something it needs:
1. A bit-stream which configures the FPGA
2. The firmware, which runs on the Gameboy and acts as

interpreter/interface between the FPGA and C software
running on the Gameboy

3. Your IC Programs (software) written by you that run on
the Gameboy and cause your robot to actually do
something

© 1993-2007 KIPR 366

The Bitstream

• A bitstream must be
resident on your XBC
for it to do anything at
all, including using the
serial port

• A bitstream can be
updated using the
Xport utility program
on your CD

© 1993-2007 KIPR 367

Using the Xport Upload Utility
(1)

• Click on the browse
button

• Navigate to the
bitstream8d0?.bit file
(current version is
8d03)

• The current version is
located in the lib/xbc
folder in your IC
program folder

© 1993-2007 KIPR 368

Using the Xport Upload Utility
(2)

• Make sure your
computer is connected
by a serial cable to the
XBC

• Verify that the serial
port is set correctly

• Turn off the XBC
• Click the Upload

button

© 1993-2007 KIPR 369

Using the Xport Upload Utility
(3)

• When the utility
shows: “Waiting for
Gameboy to Boot…”
turn the XBC back on

© 1993-2007 KIPR 370

Using the Xport Upload Utility
(4)

• While the bitstream is
being loaded, do not turn
off the XBC, Gameboy or
your computer; do not
disconnect the serial cable

• The “Cancel Upload”
button can safely cancel
the bitstream change and
leave your XBC unaltered

• Your XBC will show dots
on the screen as the
upload progresses

© 1993-2007 KIPR 371

Using the Xport Upload Utility
(5)

• When the loading is
complete it will take a few
seconds at the end for the
Gameboy to reset

• When “Programming
successful” comes up on
your computer you can:
– Exit the program, or
– Click on the “Browse for

File” to…

© 1993-2007 KIPR 372

Loading Firmware Using the
Xport Utility

© 1993-2007 KIPR 373

Using the Xport Utility for
Firmware (1)

• Select the libxbc.frm
file located in the
lib/xbc folder which is
inside the IC program
folder

• Turn off the XBC
• Click the “Upload”

button
• Turn the XBC on

© 1993-2007 KIPR 374

Using the Xport Utility for
Firmware (2)

• When loading the
firmware do not disturb
the connection

• The “Cancel Upload”
button will safely cancel
the firmware change and
leave your XBC unaltered

• Your XBC will display
progress dots on the
Gameboy display

© 1993-2007 KIPR 375

Using the Xport Utility for
Firmware (3)

• When the firmware
download is complete the
Gameboy will reset and
the screen will look
something like this -->

• Do not turn off the XBC
or the Gameboy or
disconnect things until
either the firmware load
has been cancelled or it
has been completed and
the Gameboy has reset

© 1993-2007 KIPR 376

XBC Camera Extension Cable

© 1993-2007 KIPR 377

XBC Camera has Keyed
Connector

• XBC Connector has pin 19
filled in

• Camera is missing pin 19
• Camera only fits in one way

(hanging down)
• Never force the camera into

connector
• Always unplug and turn off

XBC before connecting or
disconnecting Camera!

© 1993-2007 KIPR 378

Extension Cable (1)

• Camera has 32 pin
connector

• Cable is 34 connector
• When looking into

camera lens, extra
column of pins is on
the right

© 1993-2007 KIPR 379

Extension Cable (2)
• Camera connector on

XBC has 32 holes
• Cable connector has 34

pins
• Filled hole 19 & missing

pin help with alignment
• Extra pins go off to the

right, when looking into
camera (pins are hidden
by connector in this view)

© 1993-2007 KIPR 380

Extension Cable (3)
• Cable allows camera to be pointed independently of the position

of XBC
• Alignment pins help assure correct orientation
• If camera does not fit in, you probably have something misaligned
• Always turn off power before adding or removing camera or

cable!!

© 1993-2007 KIPR 381

There are 2 Types of Cables
Cable Up (red) and Cable Down (blue)

Cable Up (red) Cable Down (blue)

Blue and red
stripes identify
cable types

© 1993-2007 KIPR 382

Challenge Exercises

© 1993-2007 KIPR 383

Challenges

• The next 4 slides show different challenges for
you to program your robot to perform

• They are arranged in approximately increasing
order of difficulty

• Take your pick
• If time allows, do more than one
• Drive in a single circle
• Turn in place 45 degrees

© 1993-2007 KIPR 384

Challenge 1

• Make a robot that goes forward until the range
sensor returns a value, using analog12, greater
than 3000.

• Have the robot go backwards until the rear bumper
is pressed

• Have the robot repeat this forward/backward cycle
until the B button is pressed

• We call this a Ping Pong Bot

© 1993-2007 KIPR 385

Challenge 2
• Have a robot maintain a constant distance (about 25 cm)

from the object (your hand) in front of it
• When your hand moves towards the robot, the robot should

back away
• When your hand moves away from the robot, the robot

should go forwards
• Use a p-loop to control your robot’s velocity
• Question/Experiment: What happens if you move your

hand suddenly very close to the bot (less than three inches
from the sensor)?

© 1993-2007 KIPR 386

Challenge 3

• Have your robot drive in a square
• Create a function, using the BEMF

functions and the examples shown earlier,
that has your robot turn in-place 90 degrees

• Extra challenge: Write an interface for the
user that uses the up and down buttons to
change the length of the sides of the square

© 1993-2007 KIPR 387

Challenge 4

• Have your robot drive in a circle with a diameter of about
two feet

• Have the robot stop where it started (after completing a
single circle)

• Extra challenge: Write an interface for the user that uses
the up and down buttons to change the diameter of the
circle

• What factors do you think effect the repeatability?

© 1993-2007 KIPR 388

END

	Botball 2007: Workshop Slides
	Schedule
	Day 1
	Basic robot elements
	Botball robotics
	IC install
	C programming
	IC environment and simulator
	Variables and data
	Functions and libraries, #use

	iROBOsim
	Motor functions in iROBOsim
	Library functions and iROBOsim
	Moving a distance
	Programming: while
	Digital sensors
	Analog sensors
	iROBOsim sensors
	Differential steering and turns
	Programming: if-else

	2007 Botball kit electronics
	Building with Lego: demobot

	Day 2
	XBC v3 setup & jumper settings
	Loading firmware
	Gameboy buttons
	XBC display menus
	Using sensors
	Light sensors
	Reflectance sensors
	Optical rangefinder (ET)
	Sonar
	Touch sensors

	Motors and servos
	DC motors
	Ferrite bead installation

	Servo motors

	XBC reference sheet
	Testing motors and sensors
	Experiments with demobot
	Calibrating the Arm and Gripper

	Feedback and control
	Bang-bang control
	P-loop control

	Botball utilities: wait_for_light, shut_down_in
	How to shield a light sensor
	Color vision system
	Finding color blobs
	Trying out the vision systems
	Setting color models
	Camera check
	Vision library functions
	Vision challenge exercises

	Template for tournament code
	Botball is an R&D project
	Handy references

	Appendices
	Boolean expressions in C
	Selection using if-else
	Repetition using for; break statement
	++ and -- operators
	Functions and #use
	Printing in place on the XBC
	Communication between functions
	#define for IC
	Variables and scope
	Mixed expressions - casting
	Programming style
	XBC motor functions
	Pulse width modulation (PWM)
	Back EMF
	XBC Motor examples

	Computer memory, arrays
	Uploading global arrays
	Line following using reflectance
	Camera example: turn by arrow
	Processes
	Loading the bitstream using Xport utility
	Loading firmware using Xport utility
	XBC camera extension cable
	Challenge exercises

