

Appendix B 605 The Theory

Appendix B: The Theory

Appendix B 606 The Theory: Working with Logical Formulas

33 Working with Logical Formulas

Boolean formulas describe circuits. First-order logic formulas encode software specifications and robot plans. We

need efficient and correct techniques for manipulating them. In this chapter, we present some fundamental theoretical

results that serve as the basis for such techniques. We’ll begin with Boolean formulas. Then we’ll consider the

extension of some of the Boolean ideas to first-order logic.

33.1 Working with Boolean Formulas: Normal Forms, Resolution and
OBDDs

In this section we discuss three issues that may arise when working with Boolean (propositional) formulas:

• conversion of an arbitrary Boolean formula into a more restricted form (a normal form),

• boolean resolution, a proof by refutation technique, and

• efficient manipulation of Boolean formulas.

33.1.1 Normal Forms for Boolean Logic
Recall that a normal form for a set of data objects is a restricted syntactic form that simplifies one or more operations

on the objects. When we use the term “normal form”, we generally require that every object in the original set have

some equivalent (with respect to the operations for which the normal form will be used) representation in the restricted

form.

In this section we define three important normal forms for Boolean formulas and we prove that any Boolean formula

has an equivalent formula in each of those normal forms. By “equivalent” in this case we mean logical equivalence.

We begin with two definitions:

A literal in a Boolean formula is either an atomic proposition (a simple Boolean variable), or an atomic proposition

preceded by a single negation symbol. So P, Q, and P are all literals. A positive literal is a literal that is not preceded

by a negation symbol. A negative literal is a literal that is preceded by a negation symbol.

A clause is either a single literal or the disjunction of two or more literals. So P, P  P, and P  Q  R  S are all

clauses.

Conjunctive Normal Form

A well-formed formula (wff) of Boolean logic is in conjunctive normal form iff it is either a single clause or the

conjunction of two or more clauses. So all of the following formulas are in conjunctive normal form:

P.

P  Q  R  S.

(P  Q  R  S)  (P  R).

The following formulas are not in conjunctive normal form:

P → Q.

(P  Q).

(P  Q  R  S)  (P  R).

Theorem 33.1 Conjunctive Normal Form Theorem

Theorem: Given w, an arbitrary wff of Boolean logic, there exists a wff w that is in conjunctive normal form and that

is equivalent to w.

Appendix B 607 The Theory: Working with Logical Formulas

Proof: The proof is by construction. The following algorithm conjunctiveBoolean computes w given w:

 conjunctiveBoolean(w: wff of Boolean logic) =

1. Eliminate → and  from w, using the fact that P → Q is equivalent to P  Q.

2. Reduce the scope of each  to a single term, using the facts:

• Double negation: (P) = P.

• deMorgan’s laws:

• (P  Q)  (P  Q).

• (P  Q)  (P  Q).

3. Convert w to a conjunction of clauses using the fact that both  and  are associative and the fact that 

and  distribute over each other.
◼

Example 33.1 Boolean Conjunctive Normal Form

Let w be the wff P → (R  Q). Then w can be converted to conjunctive normal form as follows:

• Step 1 produces P  (R  Q).

• Step 2 produces P  (R  Q).

• Step 3 produces (P  R)  (P  Q).

Conjunctive normal form is useful as a basis for describing 3-conjunctive normal form, as we are about to do. It is

also important because its extension to first-order logic formulas is useful, as we’ll see below, in a variety of

applications that require automatic theorem proving.

3-Conjunctive Normal Form

A well-formed formula (wff) of Boolean logic is in 3-conjunctive normal form (3-CNF) iff it is in conjunctive normal

form and each clause contains exactly three literals. So the following formulas are in 3-conjunctive normal form:

(Q  R  S).

(Q  R  S)  (P  R  Q).

3-conjunctive normal form is important because it allows us to define 3-SAT = {w : w is a wff in Boolean logic, w is

in 3-conjunctive normal form and w is satisfiable}. 3-SAT is important because it is NP-complete and reduction from

it can often be used to show that a new language is also NP-complete.

Theorem 33.2 3-Conjunctive Normal Form Theorem

Theorem: Given a Boolean wff w in conjunctive normal form, there exists an algorithm that constructs a new wff w
that is in 3-conjunctive normal form and that is satisfiable iff w is.

Proof: The following algorithm 3-conjunctiveBoolean computes w given w:

 3-conjunctiveBoolean(w: wff of Boolean logic) =

1. If, in w, there are any clauses with more than three literals, split them apart, add additional variables as

necessary, and form a conjunction of the resulting clauses. Specifically, if n > 3 and there is a clause of

the following form:

(l1  l2  l3  …  ln),

then it will be replaced by the following conjunction of n-2 clauses that can be constructed by introducing

a set of literals Z1 - Zn-3 that do not otherwise occur in the formula:

(l1  l2  Z1)  (Z1  l3  Z2)  …  (Zn-3  ln-1  ln)

Appendix B 608 The Theory: Working with Logical Formulas

2. If there is any clause with only one or two literals, replicate one of those literals once or twice so that

there is a total of three literals in the clause.

In Exercise 28.4, we prove that w is satisfiable iff w is. We also prove that 3-conjunctiveBoolean runs in polynomial

time.
◼

Example 33.2 Boolean 3-Conjunctive Normal Form

Let w be the wff (P  R)  (P  Q  R  S). We note that w is already in conjunctive normal form. It can be

converted to 3-conjunctive normal form as follows:

• The first clause can be rewritten as (P  R  R).

• The second clause can be rewritten as (P  Q  Z1)  (Z1  R  S).

So the result of converting w to 3-conjunctive normal form is:

 (P  R  R)  (P  Q  Z1)  (Z1  R  S).

Disjunctive Normal Form

We now consider an alternative normal form in which conjunctions of literals are connected by disjunction (rather

than the other way around). A well-formed formula (wff) of Boolean logic is in disjunctive normal form iff it is the

disjunction of one or more disjuncts, each of which is either a single literal or the conjunction of two or more literals.

All of P, P  R, and P  Q  R  S are disjuncts, and all of the following formulas are in disjunctive normal

form:

P.

P  Q  R  S.

(P  Q  R  S)  (P  R).

Disjunctive normal form is the basis for a convenient notation for writing queries against

relational databases C 690.

Theorem 33.3 Disjunctive Normal Form Theorem

Theorem: Given w, an arbitrary wff of Boolean logic, there exists a wff w that is in disjunctive normal form and that

is equivalent to w.

Proof: The proof is by a construction similar to the one used to prove Theorem 33.1. The following algorithm

disjunctiveBoolean computes w given w:

 disjunctiveBoolean(w: wff of Boolean logic) =

1. Eliminate → and  from w, using the fact that P → Q is equivalent to P  Q.

2. Reduce the scope of each  in w to a single atomic proposition using the facts:

• Double negation: (P) = P.

• deMorgan’s laws:

• (P  Q)  (P  Q).

• (P  Q)  (P  Q).

3. Convert w to a disjunction of disjuncts using the fact that both  and  are associative and the fact that

 and  distribute over each other.
◼

Appendix B 609 The Theory: Working with Logical Formulas

Example 33.3 Boolean Disjunctive Normal Form

Let w be the wff P  (Q → (R  T)). Then w can be converted to disjunctive normal form as follows:

• Step 1 produces: P  (Q  (R  T)).

• Step 2 produces: P  (Q  R  T).

• Step 3 produces: (P  Q)  (P  R)  (P  T).

33.1.2 Boolean Resolution
Two of the most important operations on Boolean formulas are:

1) Satisfiability checking: given a wff ST, is it satisfiable or not? Recall that a wff is satisfiable iff it is true for at

least one assignment of truth values to the variables it contains.

2) Theorem proving: given a set of axioms A and a wff ST, does A entail ST? Recall that A entails Q iff, whenever

all of the wffs in A are true, Q is also true.

But note that A entails ST iff A  ST is unsatisfiable. So an algorithm for determining unsatisfiability can also be

exploited as a theorem prover. The technique that we present next is significant not just because it can be used to

reason about Boolean logic formulas. More importantly, its extension to first-order logic launched the field of

automatic theorem proving.

Resolution: The Inference Rule

The name “resolution” is used both for an inference rule and a theorem-proving technique that is based on that rule.

We first describe the inference rule. Let Q, Q, P and R be wffs. Then define:

• Resolution: From the premises: (P  Q) and (R  Q),

 Conclude: (P  R).

The soundness of the resolution rule is based on the following observation: Assume that both (P  Q) and (R  Q)

are True. Then:

• If Q is True, R must be True.

• If Q True, P must be True.

Since either Q or Q must be True, P  R must be True. To prove resolution’s soundness, it suffices to write out its

truth table. We leave that as an exercise.

Resolution: The Algorithm

We next present a theorem-proving technique called resolution. It relies on the inference rule called resolution that

we just defined. The core of the prover is an algorithm that detects unsatisfiability. So a resolution proof is a proof

by contradiction (often called refutation). A resolution proof of a statement ST, given a set of axioms A, is a

demonstration that A  ST is unsatisfiable. If ST cannot be true given A, ST must be.

The resolution procedure takes as its input a list of clauses. So, before it can be used, we must convert the axioms in

A to such a list. We do that as follows:

1. Convert each formula in A to conjunctive normal form.

2. Build L, a list of the clauses that are constructed in step 1.

Appendix B 610 The Theory: Working with Logical Formulas

Example 33.4 Making a List of Clauses

Suppose that we are given the set A of axioms as shown in column 1. We convert each axiom to conjunctive normal

form, as shown in column 2:

 Given Axioms: Converted to Conjunctive Normal Form:

 P. P.

 (P  Q) → R. P  Q  R.

 (S  T) → Q. (S  Q)  (T  Q).

 T. T.

Then the list L of clauses constructed in this process is: P, P  Q  R, S  Q, T  Q, and T.

To prove that a formula ST is entailed by A, we construct the formula ST, convert it to conjunctive normal form, and

add all of the resulting clauses to the list of clauses produced from A. Then resolution, which we describe next, can

begin.

A pair of complementary literals is a pair of literals that are not mutually satisfiable. So two literals are

complementary iff one is positive, one is negative, and they contain the same propositional symbol. For example, Q

and Q are complementary literals. We’ll say that two clauses C1 and C2 contain a pair of complementary literals iff

C1 contains one element of the pair and C2 contains the other. For example, the clauses (P  Q  R) and (T Q)

contain the complementary literals Q and Q.

Consider a pair of clauses that contain a pair of complementary literals, which, without loss of generality, we’ll call

Q and Q. So we might have C1 = R1  R2  …  Rj  Q and C2 = S1  S2  …  Sk  Q. Given C1 and C2,

resolution (the inference rule) allows us to conclude R1  R2  …  Rj  S1  S2  …  Sk. When we apply the

resolution rule in this way, we’ll say that we have resolved the parents, C1 and C2, to generate a new clause, which

we’ll call the resolvent.

The resolution algorithm proceeds in a sequence of steps. At each step it chooses from L two clauses that contain

complementary literals. It resolves those two clauses together to create a new clause, the resolvent, which it adds to

L. If any step generates an unsatisfiable clause, then a contradiction has been found. For historical reasons, the empty

clause is commonly called nil, the name given to an empty list in Lisp, the language in which many resolution provers

have been built. The empty clause is unsatisfiable since it contains no literals that can be made True. So if it is ever

generated, the resolution procedure halts and reports that, since adding ST to A has led to a contradiction, ST is a

theorem given A.

We’ll describe Lisp and illustrate its use for symbolic reasoning, including theorem

proving, in C 671.

We can state the algorithm as follows:

 resolve-Boolean(A: set of axioms in conjunctive normal form, ST: a wff to be proven) =

1. Construct L, the list of clauses from A.

2. Negate ST, convert the result to conjunctive normal form, and add the resulting clauses to L.

3. Until either the empty clause (nil) is generated or no progress is being made do:

3.1. Choose from L two clauses that contain a pair of complementary literals. Call them the parent

clauses.

3.2. Resolve the parent clauses together. The resulting clause, called the resolvent, will be the

disjunction of all the literals in both parent clauses except for one pair of complementary literals.

3.3. If the resolvent is not nil and is not already in L, add it to L.

4. If nil was generated, a contradiction has been found. Return success. ST must be true.

5. If nil was not generated and there was nothing left to do, return failure.

Appendix B 611 The Theory: Working with Logical Formulas

Example 33.5 Boolean Resolution

Given the axioms that we presented in Example 33.4, prove R. The axioms, and the clauses they generate are:

 Given Axioms: Generate the Clauses:

 P. P.

 (P  Q) → R. P  Q  R.

 (S  T) → Q. S  Q.

 T  Q.

 T. T.

We negate R. The result is already in conjunctive normal form, so we simply add it to the list of clauses:

 R.

We illustrate the resolution process by connecting each pair of parent clauses to the resolvent that they produce:

 P  Q  R R

 P  Q P

 T  Q Q

 T T

 nil

In the simple example that we just did, Resolve-Boolean found a proof without trying any unnecessary steps. In

general, though, it conducts a search through a space of possible resolvents. Its efficiency can be affected by the

choice of parents in step 3.1. In particular, the following strategies may be useful:

• Unit preference: All other things being equal, choose one parent that consists of just a single clause. Then the

resolvent will be one clause shorter than the other parent and thus one clause closer to being the empty clause.

• Set-of-support: Begin by identifying some subset S of L with the property that we can prove that any contradiction

must rely on at least one clause from S. For example, if we assume that the set of axioms is consistent, then every

contradiction must rely on at least one clause from ST. So we could choose S to be just the clauses in ST.

Then, in every resolution step, choose at least one parent from S and then add the resolvent to S.

Resolve-Boolean’s efficiency can also be affected by optimizing step 3.3. One way to do that is based on the

observation that, if the resolvent is subsumed by some clause already in L, adding it to L puts the process no closer to

finding a contradiction. It should simply be discarded. For example, if P is already in L, it makes no sense to add P

 P or P  Q. At the extreme, if the resolvent is a tautology, it is subsumed by everything. So adding it to L puts the

process no closer to finding a contradiction. It should simply be discarded. For example, it never makes sense to add

a clause such as P  P.

It is possible to prove that the procedure resolve-Boolean is sound. It is also possible to prove that, as long as resolve-

Boolean systematically explores the entire space of possible resolutions, it is refutation-complete. By that we mean

that, if A  ST is unsatisfiable, resolve-Boolean will generate nil and thus discover the contradiction.

But it is important to keep in mind the complexity results that we present in Chapter 28. We prove, as Theorem 28.16,

that the language SAT = {<w> : w is a wff in Boolean logic and w is satisfiable} is NP-complete. No polynomial-

time algorithm for deciding it is known and it is unlikely that one exists. Unsatisfiability checking appears to be even

harder since unsatisfiability, unlike satisfiability, cannot be verified just by checking one set of assignments of values

Appendix B 612 The Theory: Working with Logical Formulas

to the propositional symbols. As we see in Section 28.7, the language UNSAT = {<w> : w is a wff in Boolean logic

and w is not satisfiable} is in co-NP, i.e., it is the complement of a language in NP. But it is thought not to be in NP,

much less in P. There are ways to improve the performance of resolve-Boolean in many cases. But, in the worst case,

the time it requires grows exponentially with the number of clauses in A  ST.

33.1.3 Efficient SAT Solvers and Ordered Binary Decision Diagrams
Satisfiability checking plays an important role in many applications , including the design and analysis of digital

circuits, the use of model checking to verify properties of programs, and the planning algorithms that determine the

behavior of robots and other intelligent systems. While solving SAT in the general case remains hard, substantial

research on the development of efficient satisfiability checkers (or SAT solvers) has led to the development of practical

systems that work very well. In this section, we’ll describe one technique that plays an important role in many efficient

SAT solvers. What we’ll do is to describe a new normal form for Boolean formulas. Its advantage is that it often

produces a compact representation that can be exploited efficiently.

For many applications, we will find it useful to think of a Boolean formula P as a binary function of its inputs, so we’ll

use that notation in the rest of this example, rather than the wff notation that we introduced in A 556. So let f be a

binary function of any number of variables. We’ll encode True as 1 and False as 0.

One straightforward way to represent f is as a truth table, as we did in A 556. An alternative is as an ordered binary

decision tree. In any such tree, each non-terminal node corresponds to a variable and each terminal node corresponds

to the output of the function along the path that reached that node. From each nonterminal node there are two edges,

one (which we’ll draw to the left, with a dashed line) corresponds to the case where the value of the variable at the

parent node is 0. The other (which we’ll draw to the right, with a solid line) corresponds to the case where the value

of the variable at the parent node is 1. To define such a tree for a binary function f, we begin by defining a total

ordering (v1 < v2 < … < vn) on the n variables that represent the inputs to f. Any ordering will work, but the efficiency

of the modified structure that we will present below may depend on the ordering that has been chosen. Given an

ordering, we can draw the tree with v1 at the root, v2 at the next level, and so forth.

As an example, consider the function f1(x1, x2, x3) = (x1  x2)  x3. We can represent f1 , as shown in Figure 33.1, as

either a truth table or as a binary decision tree (where the tree is built using the variable ordering (x1 < x2 < x3).

x1 x2 x3 f1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

 x1

 x2 x2

 x3 x3 x3 x3

 0 0 0 1 0 1 0 1

Figure 33.1 Representing a function as a truth table or a binary decision tree

The size of both the truth table representation and the binary decision tree for a function f of n variables is O(2n). Any

program M that reasons about f by manipulating either of those representations (assuming it must consider all of f)

will consume at least O(2n) space and O(2n) time. So timereq(M)  (2n) and spacereq(M) (2n). If we could

reduce the size of the representation, it might be possible to reduce both the time and space requirements of any

program that uses it.

Appendix B 613 The Theory: Working with Logical Formulas

If we choose the decision tree representation, it is often possible to perform such a reduction. We can convert the tree

into a directed acyclic graph, called an ordered binary decision diagram or OBDD . OBDDs, along with algorithms

for manipulating them, were introduced in [Bryant 1986]. Our discussion of them is modeled after [Bryant 1992] and

the examples we show here were taken from that paper.

We can optimize an OBDD by guaranteeing that none of its subtrees occurs more than once. Starting from the bottom,

we will collapse all instances of a duplicate subtree into a single one. We’ll then adjust the links into that unique tree

appropriately. So we begin by creating only two terminal nodes, one labeled 0 and the other labeled 1. Then we’ll

move upward collapsing subtrees whenever possible. In the tree we just drew for f1, for example, observe that the

subtree whose root is x3, whose left branch is the terminal 0 and whose right branch is the terminal 1 occurs three

times. So the three can be collapsed into one. After collapsing them, we get the diagram shown in Figure 33.2 (a).

At this point, notice the two nodes shown with double circles. Each of them has the property that its two outgoing

edges both go to the same place. In essence, the value of the variable at that node has no effect on the value that f1

returns. So the node itself can be eliminated. Doing that, we get the diagram shown in Figure 33.2 (b).

 x1

 x2 x2

 x3 x3 (a)

 0 1

 x1

 x2 (b)

 x3

 0 1

Figure 33.2 Collapsing nodes to get an efficient OBDD

The process we just described can be executed by the following function createOBDD:

 createOBDDfromtree(d: ordered binary decision tree) =

1. Eliminate redundant terminal nodes by creating a single node for each label and redirecting edges as

necessary.

2. Until one pass is made during which no reductions occurred do:

2.1. Eliminate redundant nonterminal nodes (i.e., duplicated subtrees) by collapsing them into one and

redirecting edges as necessary.

2.2. Eliminate redundant tests by erasing any node whose two output edges go to the same place. Redirect

edges as necessary.

Appendix B 614 The Theory: Working with Logical Formulas

This process will create a maximally reduced OBDD, by which we mean that there is no smaller one that describes

the same function and that considers the variables in the same order. It is common to reserve the term OBDD for such

maximally reduced structures. Given a particular ordering (v1 < v2 < … < vn) on the n variables that represent the

inputs to some function f, any two OBDDs for f will be isomorphic to each other (i.e., the OBDD for f is unique up to

the order in which the edges are drawn). Thus the OBDD structure is a canonical form for the representation of

Boolean functions, given a particular variable ordering.

Since the OBDD for a function is unique up to isomorphism, some operations on it can be performed in constant time.

For example, a function f corresponds to a valid wff (i.e., one that is a tautology) iff its OBDD is identical to the one

shown in Figure 33.3 (a). A function f corresponds to a satisfiable wff iff its OBDD is not identical to the one shown

in Figure 33.3 (b).

 1 (a)

 0 (b)

Figure 33.3 Exploiting canonical forms

If the only way to build a reduced OBDD were to start with a decision tree and reduce it by applying

createOBDDfromtree, it would not be practical to work with functions of a large number of variables, even if the

reduced OBDD were of manageable size. Fortunately, it is possible  to build a reduced OBDD directly, without

starting with a complete decision tree.

The size of the OBDD that can be built for a function f may depend critically on the order that we impose on f’s inputs.

For example, in the original decision tree that we built for f1 above, we considered the inputs in the order x1, x2, x3.

We could have produced a slightly smaller OBDD (one with one fewer edge) if we had instead used the order x3, x1,

x2. We leave doing that as an exercise.

In some cases though, the effect of variable ordering is much more significant. Particularly in many cases of practical

interest, in which there are systematic relationships within clusters of variables, it is possible to build a maximally

reduced OBDD that is substantially smaller than the original decision tree. Consider the binary function:

f2(a1, b1, a2, b2, a3, b3) = (a1  b1)  (a2  b2)  (a3  b3).

We’ll consider two different variable orderings and the OBDDs that can be created for them. The first ordering, shown

in Figure 33.4 (a), respects the relationship between the a, b pairs. The second, shown in Figure 33.4 (b), does not

and pays a price.

Appendix B 615 The Theory: Working with Logical Formulas

 (a1 < b1 < a2 < b2 < a3 < b3).

 a1

 b1

 a2

 b2

 a3

 b3

 0 1

 (a1 < a2 < a3 < b1 < b2 < b3).

 a1

 a2 a2

 a3 a3 a3 a3

 b1 b1 b1 b1

 b2 b2

 b3

 0 1

Figure 33.4 The order of the variables matters

Fortunately, for many classes of important problems there exist heuristics  that find the variable orderings that make

small structures possible. Unfortunately, however, there are problems for which no small OBDD exists. For example,

consider a circuit that implements binary multiplication. Let f be the Boolean function corresponding to either of the

two middle digits of the result of an n-bit multiplication. The size of any OBDD for f grows exponentially with n.

Programs that solve problems for which small OBDDs exist may have manageable requirements for both time and

space. In particular, it is known that most common operations on OBDDs can be done in time that is O(nm), where

n and m are sizes of the input OBDDs. So the OBDD structure improves the expected performance (with respect to

both time and space) of many algorithms on many practical problems.

Model checkers based on OBDDs are routinely used to prove properties of systems

whose state description contains 1020 states. C 679.

However, because small OBDDs do not exist for all problems, the structure does not change the worst-case complexity

of those problems. Theorem 28.5.2 (the Cook-Levin Theorem) tells us that Boolean satisfiability is NP-complete. No

polynomial algorithm for solving it for all cases is known. So, if we can impose no constraints on the form of the

input, the worst case time complexity of any algorithm is likely to be O(2n). While there is no proof that it is not

possible to do better than that, it appears unlikely that we can.

33.2 Working with First-Order Formulas: Clause Form and Resolution
We can extend to first-order logic (FOL) the normal forms and the resolution theorem-proving procedure that we

defined for Boolean logic in the last section.

33.2.1 Clause Form
Suppose that we want to build a first-order logic theorem prover that we can use as the basis for a practical reasoning

system. One of the first things that we observe is that the standard first-order language (the one that we defined in A

558) allows quantifiers and connectors to be embedded in arbitrary ways.

Appendix B 616 The Theory: Working with Logical Formulas

Example 33.6 A Fact About Marcus

Consider the following sentence F:

 x ((Roman(x)  Know(x, Marcus)) →

 (Hate(x, Caesar)  y (z (Hate(y, z)) → Thinkcrazy(x, y)))).

F says that any Roman who knows Marcus either hates Caesar or thinks that anyone who hates anyone is crazy. So

if we knew that Paulus was a Roman who knew Marcus and who didn’t hate Caesar, we could use F to conclude that

Paulus thinks that anyone who hates anyone is crazy. Or, if we knew that Paulus was a Roman who knew Marcus,

and that Augustus hates Flavius but Paulus doesn’t think Augustus is crazy, then we could use F to conclude that

Paulus hates Caesar. Or, if we knew that Paulus knows Marcus, doesn’t hate Caesar, and doesn’t think that Augustus,

who hates Flavius is crazy, then we could use F to conclude that Paulus is not a Roman.

Each of the arguments that we have just described requires a different way of matching the other facts we already

know against the fact about Marcus’s friends. We’d like one technique that works for all of them.

One approach to solving this problem is to exploit the idea of a normal form, just as we did in dealing with Boolean

logic formulas. In particular, we can extend the notions of conjunctive and disjunctive normal forms, to first-order

logic. Now we must be concerned both with the structure of the logical connectors (just as we were for Boolean logic)

as well as the structure of the quantifiers and variables. The motivation for the definition of the normal forms we are

about to describe is the need to build theorem-proving programs. The syntax for an arbitrary sentence in first-order

logic allows a great deal of flexibility, making it hard to write programs that can reason with all the facts that they

may be given.

A sentence in first-order logic is in prenex normal form iff it is of the form:

<quantifier list> <matrix>,

where <quantifier list> is a list of quantified variables and <matrix> is quantifier-free.

Example 33.7 Prenex Normal Form

 x (y ((P(x)  Q(y)) → z (R(x, y, z))) is not in prenex normal form.

 x y z (P(x)  Q(y)) → R(x, y, z) is in prenex normal form. Its matrix is (P(x)  Q(y)) → R(x, y, z).

Any sentence can be converted to an equivalent sentence in prenex normal form by the following procedure:

1. If necessary, rename the variables so that each quantifier binds a lexically distinct variable.

2. Move all the quantifiers to the left, without changing their relative order.

We define the terms literal, clause, and conjunctive normal form for sentences in first-order logic analogously to the

way they were defined for Boolean logic:

• A literal is either a single predicate symbol, along with its argument list, or it is such a predicate preceded by a

single negation symbol. So P(x, f(y)) and Q(x, f(y), 2) are literals. A positive literal is a literal that is not preceded

by a negation symbol. A negative literal is a literal that is preceded by a negation symbol.

• A clause is either a single literal or the disjunction of two or more literals.

• A sentence in first-order logic is in conjunctive normal form iff its matrix is either a single clause or the

conjunction of two or more clauses.

A ground instance is a first-order logic expression that contains no variables. So, for example, Major-of(Sandy,

Math) is a ground instance, but x (y ((Major-of(x, y))) is not.

Appendix B 617 The Theory: Working with Logical Formulas

A sentence in first-order logic is in clause form iff:

• it has been converted to prenex normal form,

• its quantifier list contains only universal quantifiers,

• its quantifier list is no longer explicitly represented,

• it is in conjunctive normal form, and

• there are no variable names that appear in more than one clause. This last condition is important because there

will no longer be explicit quantifiers to delimit the scope of the variables. The only way to tell one variable from

another will be by their names.

Example 33.8 Clause Form

The following sentence is not in clause form:

 x (P(x) → Q(x))  y (S(y)).

When it is converted to prenex normal form, we get:

 x y (P(x) → Q(x))  S(y).

Then, when it is converted to clause form, we get the conjunction of two clauses:

(P(x)  Q(x))  S(y).

We are going to use clause form as the basis for a first-order, resolution-based proof procedure analogous to the

Boolean procedure that we defined in the last section. To do that, we need to be able to convert an arbitrary first-order

sentence w into a new sentence w such that w is in clause form and w is unsatisfiable iff w is. In the proof of the

next theorem, we provide an algorithm that does this conversion. All of the steps are straightforward except the one

that eliminates existential quantifiers, so we’ll discuss it briefly before we present the algorithm.

Let Mother-of(y, x) be true whenever y is the mother of x. Consider the sentence x (y ((Mother-of(y, x))). Everyone

has a mother. There is not a single individual who is the mother of everyone. But, given a value for x, some mother

exists. We can eliminate the existentially quantified variable y using a technique called Skolemization, based on an

idea due to Thoralf Skolem [Skolem 1928]. We replace y by a function of x. We know nothing about that function.

(We don’t know, for example, that it is computable.) We know only that it exists. So we assign the function a name

that is not already being used, say f1. Then:

x (y ((Mother-of(y, x))) becomes x ((Mother-of(f1(x), x)).

Multiple existential quantifiers in the same sentence can be handled similarly, but it is important that a new function

be created for each existential quantifier. For example, consider the predicate Student-data(x, y, z) that is true iff

student x enrolled at date y and has major z. Then:

x (y (z (Student-data(x, y, z)))) becomes x (Student-data(x, f2(x), f3(x))).

The function f2(x) produces a date and the function f3(x) produces a major. Now consider the predicate Sum(x, y, z),

that is true iff the sum of x and y is z. Then:

x (y (z (Sum(x, y, z)))) becomes x (y (Sum(x, y, f4(x, y)))).

In this case, the value of z that must exist (and be produced by f4) is a function of both x and y. More generally, if an

existentially quantified variable occurs inside the scope of n universally quantified variables, it can be replaced by a

function of n arguments corresponding to those n variables. In the simple case in which an existentially quantified

variable occurs inside the scope of no universally quantified variables, it can be replaced by a constant (i.e., a function

of no arguments). So:

Appendix B 618 The Theory: Working with Logical Formulas

x (Student(x)) becomes Student(f4).

The functions that are introduced in this way are called Skolem functions and Skolem constants.

Skolemization plays a key role in theorem-proving systems (particularly resolution-based ones) because the

Skolemization of a sentence w is unsatisfiable iff w is. But note that we have not said that a Skolemization is

necessarily equivalent to the original sentence from which it was derived. Consider the simple sentence, x (P(x)). It

can be Skolemized as P(f1). But now observe that:

• x (P(x)) → x (P(x)) is valid (i.e., it is a tautology). It is true in all interpretations.

• x (P(x)) → P(f1) is satisfiable since it is True if P(f1) is True. But it is not valid, since it is False

if P is true for some value of x that is different from f1 but False for f1.

So x (P(x)) and P(f1) are not logically equivalent.

The proof of the Clause Form Theorem, which we state next, exploits Skolemization, in combination with standard

logical identities, as the basis of an algorithm that converts any first-order sentence w into another sentence w that is

in clause form and that is unsatisfiable iff w is.

Theorem 33.4 Clause Form Theorem

Theorem: Given w, a sentence in first-order logic, there exists a clause form representation w such that w is

unsatisfiable iff w is.

Proof: The proof is by construction. The following algorithm converttoclauseform computes a clause form

representation of w:

 converttoclauseform(w: first-order sentence) =

1. Eliminate → and , using the fact that P → Q is equivalent to P  Q.

2. Reduce the scope of each  to a single term, using the facts:

• Double negation: (P) = P.

• deMorgan’s laws:

• (P  Q)  (P  Q).

• (P  Q)  (P  Q).

• Quantifier exchange:

• x (P(x))  x (P(x)).

• x (P(x))  x (P(x)).

3. Standardize apart the variables so that each quantifier binds a unique variable. For example, given the

sentence:

x (P(x))  x (Q(x)),

the variables can be standardized apart to produce:

x (P(x))  y (Q(y)).

4. Move all quantifiers to the left without changing their relative order. At this point, the sentence is in

prenex normal form.

5. Eliminate existential quantifiers via Skolemization, as described above.

6. Drop the prefix since all remaining quantifiers are universal.

Appendix B 619 The Theory: Working with Logical Formulas

7. Convert the matrix to a conjunction of clauses by using the fact that both  and  are associative and the

fact that  and  distribute over each other.

8. Standardize apart the variables so that no variable occurs in more than one clause.

◼

Example 33.9 Converting the Marcus Fact to Clause Form

We now return to F, the statement about Marcus’s friends that we introduced in Example 33.6:

 x ((Roman(x)  Know(x, Marcus)) →

 (Hate(x, Caesar)  y (z (Hate(y, z)) → Thinkcrazy(x, y)))).

We convert F to clause form as follows:

Step 1: Eliminate →. This step produces:

 x ((Roman(x)  Know(x, Marcus)) 

 (Hate(x, Caesar)  y (z (Hate(y, z))  Thinkcrazy(x, y)))).

Step 2: Reduce the scope of . This step produces: (Notice that the existential quantifier disappears here.)

 x (Roman(x)  Know(x, Marcus) 

 (Hate(x, Caesar)  y (z (Hate(y, z))  Thinkcrazy(x, y)))).

Steps 3 and 4: Standardize apart and shift the quantifiers to the left. This step produces:

 x y z (Roman(x)  Know(x, Marcus) 

 (Hate(x, Caesar)  Hate(y, z)  Thinkcrazy(x, y))).

Steps 5 – 8: These last steps produce:

 Roman(x)  Know(x, Marcus)  Hate(x, Caesar)  Hate(y, z)  Thinkcrazy(x, y).

Example 33.10 Handling Existential Quantifiers and Standardizing Apart

We convert the following sentence to clause form:

 x (Person(x) → (y (Mother-of(y, x))  y (Father-of(y, x)))).

Step 1: Eliminate →. This step produces:

 x (Person(x)  (y (Mother-of(y, x))  y (Father-of(y, x)))).

Step 2: Reduce the scope of . This step is not necessary.

Step 3: Standardize apart the variables so that each quantifier binds a unique variable.

 x (Person(x)  (y1 (Mother-of(y1, x))  y2 (Father-of(y2, x)))).

Step 4: Move all quantifiers to the left without changing their relative order.

 x y1 y2 (Person(x)  (Mother-of(y1, x)  Father-of(y2, x))).

Appendix B 620 The Theory: Working with Logical Formulas

Step 5: Eliminate existential quantifiers via Skolemization.

 x (Person(x)  (Mother-of(f1(x), x)  Father-of(f2(x), x))).

Step 6: Drop the prefix since all remaining quantifiers are universal.

 Person(x)  (Mother-of(f1(x), x)  Father-of(f2(x), x)).

Step 7: Convert the matrix to a conjunction of clauses.

 (Person(x)  Mother-of(f1(x), x))  (Person(x)  Father-of(f2(x), x)).

Step 8: Standardize apart the variables so that no variable occurs in more than one clause.

 (Person(x1)  Mother-of(f1(x1), x1))  (Person(x2)  Father-of(f2(x2), x2)).

Now the two clauses can be treated as independent clauses, regardless of the fact that they were derived from the same

original sentence.

The design of a theorem prover can be simplified if all of the inputs to the theorem prover have been converted to

clause form.

Example 33.11 Using the Marcus Fact in a Proof

We now return again to F, the statement about Marcus’s friends that we introduced in Example 33.6:

 x ((Roman(x)  Know(x, Marcus)) →

 (Hate(x, Caesar)  y (z (Hate(y, z)) → Thinkcrazy(x, y)))).

When we convert this statement to clause form, we get, as we showed in the last example, the formula that we will

call FC:

 (FC) Roman(x)  Know(x, Marcus)  Hate(x, Caesar)  Hate(y, z)  Thinkcrazy(x, y).

In its original form, F is not obviously a way to prove that someone isn’t a Roman. But, in clause form it is easy to

use for that purpose. Suppose we add the following facts:

 Know(Paulus, Marcus).

 Hate(Paulus, Caesar).

 Hate(Augustus, Flavius).

 Thinkcrazy(Paulus, Augustus).

We can now prove that Paulus is not a Roman. Paulus knows Marcus, doesn’t hate Caesar, and doesn’t think that

Augustus, who hates Flavius is crazy. The general statement about Marcus’s friends must hold for all values of x. In

the case of Paulus, we’ve ruled out four of the five literals that could make it true. The one that remains is

Roman(Paulus). Note that to implement the reasoning that we just did, we need a way to match literals like

Know(Paulus, Marcus) and Know(x, Marcus). We’ll present unification, a technique for doing that, in the next

section.

33.2.2 First-Order Logic Resolution
First-order logic is undecidable. We stated that result as Theorem 22.4: The language FOLtheorem = {<A, w> : A is a

decidable set of axioms in first-order logic, w is a sentence in first-order logic, and w is entailed by A} is not in D. As

a proof, we sketched Turing’s proof. So there is no algorithm to decide whether or not a statement is a theorem. But,

as we showed in Theorem 22.3, the language FOLtheorem is semidecidable by an algorithm that constructs a

lexicographic enumeration of the valid proofs given A. Given a statement w, that algorithm will discover a proof if

Appendix B 621 The Theory: Working with Logical Formulas

one exists. To make theorem-proving useful in practical problem domains, however, we need techniques that are

substantially more efficient than the exhaustive enumeration method. Fortunately, such techniques exist. And finding

even better ones remains an active area of research. Keep in mind, however, that every first-order logic theorem

prover has the limitation that, if asked to prove a nontheorem, it may not be able to tell that no proof exists.

In this section we describe one important proof technique: the extension to first-order logic of the resolution algorithm

that we presented for Boolean logic in B 609. First-order resolution was introduced in [Robinson 1965] and has

served, since then, as the basis for several generations of automatic theorem-proving programs. It is sound (i.e., it can

prove only theorems that are entailed by the axioms it is given). And it is refutation-complete, by which we mean the

following: Given a set of axioms A and a sentence ST, if ST is a theorem then A  ST will derive a contradiction and

the resolution algorithm, assuming it uses a systematic strategy for exploring the space of possible resolution steps,

will (eventually) find it. We note, however, that first-order resolution is not complete in the sense that there may be

theorems that will not be generated by any resolution step.

First-order logic resolution is the basis for logic programming languages such as Prolog,

C 762. It has played a key role in the evolution of the field of artificial intelligence, C

760. It has been used to solve problems in domains ranging from program verification,

C 679, to medical reasoning. One noteworthy application in mathematics was the proof

of the Robbins Algebra Conjecture, which had outwitted mathematicians for 60 years .

A first-order logic resolution theorem prover  works in essentially the same way a Boolean one does. It begins with

A, a set of axioms that have been converted to clause form. To prove a statement ST, it negates ST, converts the result

to clause form, and adds it to A. Then, at each resolution step, it chooses two parent clauses that contain

complementary literals, resolves the two clauses together, creates a resolvent, and adds it to A. If the unsatisfiable

clause nil is ever generated, a contradiction has been found.

Unification

The only new issue that we must face is how to handle variables and functions. In particular, what does it now mean

to say that two literals are complementary? As before, two literals are complementary iff they are inconsistent. Two

literals are inconsistent iff one of them is positive, one of them is negative (i.e., begins with ), they both contain the

same predicate, and they are about intersecting sets of individuals. In other words, two literals are inconsistent, and

thus complementary, iff they make conflicting claims about at least one individual. To check for this, resolution

exploits a matching process called unification. Unification takes as its arguments two literals, each with any leading

 removed. It will return Fail if the two literals do not match, either because their predicates are different or because

it is not certain that the intersection of the sets of individuals that they are about is not empty. It will succeed if they

do match. And, in that case, it will return a list of substitutions that describes how one literal was transformed into

the other so that they match and the nonempty intersection was found.

When are two literals about intersecting sets of individuals? Recall that all clause variables are universally quantified.

So the domains of any two variables overlap. For example, P(x) and P(y) are complementary literals. One says P

is true of everyone; the other says that P is false of everyone. The domain of any one variable necessarily includes all

specific values. So P(x) and P(Marcus) are complementary since P cannot be true of everyone but not true of

Marcus. P(Caesar) and P(Marcus) are not complementary since P can be true of Caesar but not of Marcus.

P(f(Marcus)) and P(f(Marcus)) are complementary, but P(f(Marcus)) and P(f(Caesar)) are not. While it is possible

that f(Marcus) and f(Caesar) refer to the same individual, it is not certain that they do. Unification will handle

functions by recursively invoking itself. It will check that function symbols match in the same way that it checks that

predicate symbols match.

If the same variable occurs more than once in a clause, any substitutions that are made to it must be made consistently

to all of its occurrences. So the unification algorithm must, each time it makes a substitution, apply it to the remainder

of both clauses before it can continue. For example, consider unifying Know(x, x) (everyone knows him/her/itself)

and Know(Marcus, Marcus). Unification will match the first x with the first Marcus, substituting Marcus for x. It

will then substitute Marcus for the second occurrence of x before it continues. It will succeed when it next matches

Marcus with Marcus. But now consider unifying Know(x, x) and Know(Marcus, Caesar). The second literal,

Appendix B 622 The Theory: Working with Logical Formulas

Know(Marcus, Caesar), is not about knowing oneself. Unification will fail in this case because it will substitute

Marcus for x, apply that substitution to the second x, and then fail to match Marcus and Caesar.

Each invocation of the unification procedure will return either the special value Fail or a list of substitutions. We will

write each list as (subst1, subst2, …). We will write each substitution as sub1/sub2, meaning that sub1 is to be written

in place of sub2. If unification succeeds without performing any substitutions, the substitution list will be nil (the

empty list). We are now ready to state the unification procedure:

 unify-for-resolution(lit1, lit2: variables, constants, function expressions or positive literals) =

1. If either lit1 or lit2 is a variable or a constant then:

1.1. Case (checking the conditions in order and executing only the first one that matches):

 lit1 and lit2 are identical: return nil. /* Succeed with no substitution required.

 lit1 is a variable that occurs in lit2: return Fail. /* These two cases implement the

 lit2 is a variable that occurs in lit1: return Fail. occur check. See note below.

 lit1 is a variable: return (lit2/lit1).

 lit2 is a variable: return (lit1/lit2).

 otherwise: return Fail. /* Two different constants do not match.

2. If the initial predicate or function symbols of lit1 and lit2 are not the same, return Fail.

3. If lit1 and lit2 do not have the same number of arguments, return Fail.

4. substitution-list = nil.

5. For i = 1 to the number of arguments of lit1 do:

5.1. Let S be the result of invoking unify-for-resolution on the ith argument of lit1 and of lit2.

5.2. If S contains Fail, return Fail.

5.3. If S is not equal to nil then:

5.3.1. Apply S to the remainder of both lit1 and lit2.

5.3.2. Append S to substitution-list.

6. Return substitution-list.

In step 1.1, unify-for resolution performs a check called the occur check. Consider attempting to unify f(x) with

f(g(x)). Without the occur check, the function expression g(x) could be unified with x, producing the substitution

g(x)/x. But now there is no way to apply that substitution consistently to the new occurrence of x. In this case, the

problem might simply not be noticed, with the consequence that any theorem prover that uses the result of the

unification may produce an unsound inference. The problem is even clearer in the following case: Consider

attempting to unify f(x, x) with f(g(x), g(x)). Without the occur check, g(x) could be unified with x, again producing

the substitution g(x)/x. But now, the unification algorithm must apply that substitution to the remainder of the two

clauses before it can continue. So (, x) and (, g(x)) become (, g(x)) and (, g(g(x))). But now it has to substitute again,

and so forth. Unfortunately, the occur check is expensive. So some theorem-proving programs omit it and take a

chance.

Example 33.12 Unification Examples

We show the result of unify-for-resolution in each of the following cases:

Appendix B 623 The Theory: Working with Logical Formulas

 Inputs

 [1] Roman(x),

 Roman(Paulus).

 [2] Roman(x),

 Ancient(Paulus).

 [3] Roman(father-of(Marcus)),

 Roman(x).

 [4] Roman(father-of(Marcus)),

 Roman(Flavius).

 [5] Roman(x),

 Roman(y).

 [6] Roman(father-of(x)),

 Roman(x).

 [7] Likes(x, y),

 Likes(Flavius, Marcus).

 Result

Succeed

Fail

Succeed

Fail

Succeed

Fail (fails occur

 check)

Succeed

 Substitution

Paulus/x.

father-of(Marcus)/x.

x/y.

Flavius/x, Marcus/y.

Notice that unify-for-resolution is conservative. It returns a match only if it is certain that its two arguments describe

intersecting sets of individuals. For example, father-of(Marcus) and Flavius may (but do not necessarily) refer to the

same individual. Without additional information, we do not want resolution to assert a contradiction between

Roman(father-of(Marcus)) and Roman(Flavius).

One other property of unify-for-resolution is worth noting: Consider unifying Roman(x) with Roman(y). The

algorithm as given here returns the substitution x/y. We could, equivalently, have defined it so that it would return

y/x. That choice was arbitrary. But we could also have defined it so that it returned the substitution Marcus/x,

Marcus/y. That substitution effectively converts a statement that had applied to all individuals into one that applies

only to Marcus. This restricted statement is entailed by the more general one, so a theorem prover that exploited such

a match would still be sound. But proving statements would become more difficult because resolution is going to

look for contradictions. General statements lead to more contradictions than specific ones do. So we can maximize

the performance of a resolution theorem prover if we exploit a unification algorithm that returns what we will call a

most general unifier, namely a substitution with the property that no other substitution that preserves soundness

imposes fewer restrictions on the values of the variables. The algorithm that we have presented always returns a most

general unifier.

We can now define complementary literals analogously to the way they were defined for Boolean logic. Two literals

are complementary literals iff they unify and one of them is the negation of the other. So, for example Roman(x)

and Roman(Paulus) are complementary literals. Just as in the case of Boolean logic, the conjunction of a pair of

complementary literals is unsatisfiable.

Resolution: The Algorithm

Now that we have a way to identify complementary literals, we can define the resolution algorithm for first-order

logic. It works the same way that resolution works in Boolean logic except that two new things need to happen after

each resolution step:

• The substitution that was produced when the two complementary literals were unified must be applied to the

resolvent clause. To see why this is important, consider resolving P(x)  Q(x) with Q(Marcus). The first clause

says that, for all values of x, at least one of P or Q must be true. The second one says that, in the specific case of

Marcus, Q is not true. From those two clauses, it follows that, in the specific case of Marcus, P must be true. It

does not follow that P must be true of all values of x. The result of unifying Q(x) with Q(Marcus) is the

substitution Marcus/x. So we can construct the result of resolving these two clauses by first building the clause

that is the disjunction of all literals except the two complementary ones. That gives us P(x). We then apply the

substitution Marcus/x to that, which produces P(Marcus).

• We must guarantee that the variable names in the resolvent are distinct from all the variable names that already

occur in any of the clauses in L. If this is not done, it is possible that later resolution steps will treat two different

Appendix B 624 The Theory: Working with Logical Formulas

variables that just happen to have the same name as though they were a single variable to which consistent

substitutions must be applied. For a concrete example of the problem that this can cause, see Exercise 33.8).

 resolve-FOL(A: set of axioms in clause form, ST: a statement to be proven) =

1. Construct L, the list of clauses from A.

2. Rename all variables in ST so that they do not conflict with any variables in L.

3. Negate ST, convert the result to clause form, and add the resulting clauses to L.

4. Until either the empty clause (called nil) is generated or no progress is being made do:

4.1. Choose from L two clauses that contain a pair CL of complementary literals. Call them the parent

clauses.

4.2. Resolve the parent clauses together to produce a new clause called the resolvent:

4.2.1. Initially, let the resolvent be the disjunction of all of the literals in both parent clauses except for

the two literals in CL.

4.2.2. Apply to all of the literals in the resolvent the substitution that was constructed when the literals

in CL were unified.

4.2.3. Rename all of the variables in the resolvent so that they do not conflict with any of the variables

in L.

4.3. If the resolvent is not nil and is not already in L, add it to L.

5. If nil was generated, a contradiction has been found. Return success. ST must be true.

6. If nil was not generated and there was nothing left to do, return failure. ST may or may not be true. But no

proof of ST has been found.

Example 33.13 FOL Resolution

Assume that we are given the following axioms (in clause form):

 (FC) Roman(x)  Know(x, Marcus)  Hate(x, Caesar)  Hate(y, z)  Thinkcrazy(x, y).

 Hate(Cornelius, Caesar).

 Hate(Augustus, Flavius).

 Thinkcrazy(Cornelius, Augustus).

 Roman(Cornelius).

We will use resolution to prove x (Know(x, Marcus)).

We negate x (Knows(x, Marcus)), producing (x (Know(x, Marcus))) or x (Know(x, Marcus)). Converting

this to clause form (and standardizing apart the variables), we get:

 Know(x1, Marcus).

Resolution can now proceed as follows. (But note that this is just one path it could pursue. It could choose parent

clauses in a different order.) We show, at each resolution step, the substitution that the unification process produced.

Note also that the variable names have been standardized apart at each step.

Appendix B 625 The Theory: Working with Logical Formulas

 Know(x1, Marcus) (FC)

 x1/x (or the other way around)

 Hate(Cornelius, Caesar) Roman(x2)  Hate(x2, Caesar)  Hate(y2, z2)  Thinkcrazy(x2, y2)

 Cornelius/x2

 Roman(Cornelius)  Hate(y3, z3)  Thinkcrazy(Cornelius, y3) Roman(Cornelius)

 Thinkcrazy(Cornelius, Augustus) Hate(y4, z4)  Thinkcrazy(Cornelius, y4)

 Augustus/y4

 Hate(Augustus, z5) Hate(Augustus, Flavius)

 Flavius/z5

 nil

Resolve-FOL must typically search a space of possible resolution paths. As we saw in the case of resolve-Boolean,

the efficiency of the search process can be affected by the order in which parent clauses (and complementary literals

within them) are chosen. In particular both the unit preference strategy and the set-of-support strategy may be useful.

The efficiency of the process can also be improved by failing to insert into L those resolvents that put the process no

closer to finding a contradiction (for example because they are subsumed by clauses that are already present). Other

optimizations are also possible . Even with them, however, the size of the search space that must be explored may

grow too fast to make resolution a practical solution for many kinds of problems. One way to cut down the space is

to limit the form of the clauses that are allowed. For example, logic programming languages, such as Prolog, work

only with Horn clauses, which may have at most one positive literal. See C 762 for a brief introduction to Prolog and

some of its applications.

Resolution: The Inference Rule

Recall that, in our discussion of resolution in Boolean logic, we pointed out that resolution is both an inference rule

and an algorithm for checking unsatisfiability. The same is true for resolution in first-order logic. Using the definitions

of unification and substitution that we have just provided, we can state resolution as an inference rule. Let Q, Q, P1,

P2, … , Pn and R1, R2, … , Rn be literals, let substitution-list be the substitution that is returned by unify-for-resolution

when it unifies Q and Q, and let substitute(clause, substitution-list) be the result of applying substitution-list to

clause. Then define:

• Resolution: From the premises: (P1  P2  …  Pn  Q) and (R1  R2  …  Rm  Q),

 Conclude: substitute((P1  P2  …  Pn  R1  R2  …  Rm), substitution-list).

33.3 Exercises
1) Convert each of the following Boolean formulas to conjunctive normal form:

a) (a  b) → c.

b) (a → (b  c)).

c) (a  b) → (c  d).

d) (p → (q  (r  s))).

2) Convert each of the following Boolean formulas to 3-conjunctive normal form:

a) (a  b) (a  b  c  d  e).

b) (a → (b  c)).

3) Convert each of the following Boolean formulas to disjunctive normal form:

a) (a  b)  (c  d).

b) (a  b) → (c  d).

Appendix B 626 The Theory: Working with Logical Formulas

4) Use a truth table to show that Boolean resolution is sound.

5) Use resolution to show that the following premises are inconsistent:

a  b  c, b  d, c  d, b  c  d, a  b, and d  b.

6) Prove that the conclusion b  c follows from the premises: a → (c  d), b → a, d → c, and b.

a) Convert the premises and the negation of the conclusion to conjunctive normal form.

b) Use resolution to prove the conclusion.

7) Consider the Boolean function f1(x1, x2, x3) = (x1  x2)  x3. that we used as an example in B 612. Show how f1

can be converted to an OBDD using the variable ordering (x3 < x1 < x2).

8) In this problem, we consider the importance of standardizing apart the variables that occur in a first-order sentence

in clause form. Assume that we are given a single axiom, x (Likes(x, Ice cream)). And we want to prove x

(Likes(Mikey, x)). Use resolution to do this but don’t standardize apart the two occurrences of x. What happens?

9) Begin with the following fact from Example 33.6:

 [1] x ((Roman(x)  Know(x, Marcus)) →

 (Hate(x, Caesar)  y (z (Hate(y, z)) → Thinkcrazy(x, y)))).

Add the following facts:

[2] x ((Roman(x)  Gladiator(x)) → Know(x, Marcus)).

[3] Roman(Claudius).

[4] x (Thinkcrazy(Claudius, x)).

[5] x (Hate(Claudius, x)).

[6] Hate(Isaac, Caesar).

[7] x ((Roman(x)  Famous(x)) → (Politician(x)  Gladiator(x))).

[8] Famous(Isaac).

[9] Roman(Isaac).

[10] Know(Isaac, Marcus).

a) Convert each of these facts to clause form.

b) Use resolution and this knowledge base to prove Gladiator(Claudius).

c) Use resolution and this knowledge base to prove Politician(Isaac).

10) In C 762, we describe a restricted form of first-order resolution called SLD resolution. This problem explores an

issue that arises in that discussion. In particular, we wish to show that SLD resolution is not refutation-complete

for knowledge bases that are not in Horn clause form. Consider the following knowledge base B (that is not in

Horn clause form):

 [1] P(x1)  Q(x1).

 [2] P(x2)  Q(x2).

 [3] P(x3)  Q(x3).

 [4] P(x4)  Q(x4).

a) Use resolution to show that B is inconsistent (i.e., show that the empty clause nil can be derived).

b) Show that SLD resolution cannot derive nil from B.

Appendix B 627 The Theory: Part II

34 Part II: Finite State Machines and Regular Languages

In this chapter, we will do, in gory detail, one proof of the correctness of a construction algorithm.

Theorem 5.3 asserts that, given a nondeterministic FSM M that accepts some language L, there exists an equivalent

deterministic FSM that accepts L. We proved this theorem by construction. We described the following algorithm:

ndfsmtodfsm(M: NDFSM) =

1. For each state q in K do:

 Compute eps(q). /* These values will be used below.

2. s' = eps(s)

3. Compute ':

3.1. active-states = {s'}. /* We will build a list of all states that are reachable

 from the start state. Each element of active-states

 is a set of states drawn from K.

3.2. ' = .

3.3. While there exists some element Q of active-states for which ' has not yet been computed do:

For each character c in  do:

new-state = .

For each state q in Q do:

For each state p such that (q, c, p)   do:

new-state = new-state  eps(p).

Add the transition (Q, c, new-state) to '.

If new-state  active-states then insert it into active-states.

4. K' = active-states.

5. A' = {Q  K' : Q  A   }.

From any NDFSM M, ndfsmtodfsm constructs a DFSM M', which we claimed is both (1) deterministic and (2)

equivalent to M. We prove those claims here.

Proving (1) is trivial. By the definition in step 3 of ', we are guaranteed that ' is defined for all reachable elements

of K' and all possible input characters. Further, step 3 inserts a single value into ' for each state, input pair, so M' is

deterministic.

Next we must prove (2). In other words, we must prove that M' accepts a string w if and only if M accepts w. We

constructed the transition function ' of M' so that M' mimics an “all paths” simulation of M. We must now prove that

that simulation returns the same result that M would. In particular, ' defines each individual step of the behavior of

M'. We must show that a sequence of steps of M' mimics the corresponding sequence of steps of M and then that the

results of the two sequences are identical.

So we begin by proving the following lemma, which asserts that entire sequences of moves of M' behave as they

should:

Lemma: Let w be any string in *, let p and q be any states in K, and let P be any state in K'. Then:

(q, w) |-M* (p, ) iff (eps(q), w) |-M'* (P, ) and p  P.

In other words, if the original NDFSM M starts in state q and, after reading the string w, can land in state p

(along at least one of its paths), then the new machine M' must behave as follows: when started in the state

that corresponds to the set of states the original machine M could get to from q without consuming any input,

M' reads the string w and lands in one of its new “set” states that contains p. Furthermore, because of the

only-if part of the lemma, M' must end up in a “set” state that contains only states that M could get to from q

after reading w and following any available -transitions.

Appendix B 628 The Theory: Part II

To prove the lemma we must show that ' has been defined so that the individual steps of M', when taken together, do

the right thing for an input string w of any length. Since we know what happens one step at a time, we will prove the

lemma by induction on |w|.

We must first prove that the lemma is true for the base case, where |w| = 0 (i.e., w = ). To do this, we actually have

to do two proofs, one to establish it for the if part of the lemma, and the other to establish it for the only if part:

Base step, if part: prove that (q, w) |-M* (p, ) if (eps(q), w) |-M'* (P, ) and p  P. Or, turning it around to make it a

little clearer:

 [(eps(q), w) |-M'* (P, ) and p  P] → [(q, w) |-M*(p, )].

If |w| = 0, then, since M' contains no -transitions, M' makes no moves. So it must end in the same state it started in,

namely eps(q). So P = eps(q). If P contains p, then p  eps(q). But, given our definition of the function eps, that

means exactly that, in the original machine M, p is reachable from q just by following -transitions, which is exactly

what we need to show.

Base step, only if part: we need to show:

 [(q, w) |-M* (p, )] → [(eps(q), w) |-M'* (P, ) and p  P].

If |w| = 0 and the original machine M goes from q to p with only w as input, it must go from q to p following just -

transitions. In other words p  eps(q). Now consider the new machine M'. It starts in eps(q), the set state that includes

all the states that are reachable from q via  transitions. Since M' contains no -transitions, it will make no moves at

all if its input is . So it will halt in exactly the same state it started in, namely eps(q). So P = eps(q) and thus contains

p.. So M' has halted in a set state that includes p, which is exactly what we needed to show.

Next we’ll prove that, if the lemma is true for all strings w of length k, where k  0, then it is true for all strings of

length k + 1. Any string of length k + 1 must contain at least one character. So we can rewrite any such string as zx,

where x is a single character and z is a string of length k. The way that M and M' process z will thus be covered by the

induction hypothesis. We use the definition of ', which specifies how each individual step of M' operates, to show

that, assuming that the machines behave identically for the first k characters, they behave identically for the last

character also and thus for the entire string of length k + 1. Recall the definition of ':

 '(Q, c) = {eps(p) : qQ ((q, c, p)  )}.

To prove the lemma, we must show a relationship between the behavior of:

The computation of the NDFSM M: (q, w) |-M* (p, ), and

The computation of the DFSM M': (eps(q), w) |-M'* (P, ) and p  P.

Rewriting w as zx, we have:

The computation of the NDFSM M: (q, zx) |-M* (p, ), and

The computation of the DFSM M': (eps(q), zx) |-M'* (P, ) and p  P.

Breaking each of these computations into two pieces, the processing of z followed by the processing of the single

remaining character x, we have:

The computation of the NDFSM M: (q, zx) |-M* (si, x) |-M (p, ), and

The computation of the DFSM M': (eps(q), zx) |-M'* (Q, x) |-M'* (P, ) and p  P.

In other words, after processing z, M will be in some set of states S, whose elements we’ll write as si. M' will be in

some “set” state that we will call Q. Again, we’ll split the proof into two parts:

Appendix B 629 The Theory: Part II

Induction step, if part: we must prove:

 [(eps(q), zx) |-M'* (Q, x) |-M'* (P, ) and p  P] → [(q, zx) |-M* (si, x) |-M (p, )].

If, after reading z, M' is in state Q, we know, from the induction hypothesis, that the original machine M, after reading

z, must be in some set of states S and that Q is precisely that set. Now we just have to describe what happens at the

last step when the two machines read x. If we have that M', starting in Q and reading x lands in P, then we know, from

the definition of ' above, that P contains precisely the states that M could land in after starting in any state in S and

reading x. Thus if p  P, p must be a state that M could land in if started in si on reading x.

Induction step, only if part: we must prove:

 [(q, zx) |-M* (si, x) |-M (p, )] → [(eps(q), zx) |-M'* (Q, x) |-M'* (P, ) and p  P].

By the induction hypothesis, we know that if M, after processing z, can reach some set of states S, then Q (the state M'

is in after processing z) must contain precisely all the states in S. Knowing that, and our definition of ', we know that

from Q, reading x, M' must be in some set state P that contains precisely the states that M can reach starting in any of

the states in S, reading x, and then following all  transitions. So, after consuming w (i.e., zx), M', when started in

eps(q), must end up in a state P that contains all and only the states p that M, when started in q, could end up in.

Now that we have proved the lemma, we can complete the proof that M' is equivalent to M. Consider any string

w  *:

If w  L(M) (i.e., the original machine M accepts w) then the following two statements must be true:

1. The original machine M, when started in its start state, can consume w and end up in an accepting state. This

must be true given the definition of what it means for a machine to accept a string.

2. (eps(s), w) |-M'* (Q, ) for some Q containing some a  A. In other words, the new machine, when started in its

start state, can consume w and end up in one of its accepting states. This follows from the lemma, which is more

general and describes a computation from any state to any other. But if we use the lemma and let q equal s (i.e.,

M begins in its start state) and p = a for some a  A (i.e., M ends in an accepting state), then we have that the new

machine M', when started in its start state, eps(s), will consume w and end in a state that contains a. But if M'

does that, then it has ended up in one of its accepting states (by the definition of A' in step 5 of the algorithm). So

M' accepts w (by the definition of what it means for a machine to accept a string).

If w  L(M) (i.e., the original machine M does not accept w) then the following two statements must be true:

1. The original machine M, when started in its start state, will not be able to end up in an accepting state after reading

w. This must be true given the definition of what it means for a machine to accept a string.

2. If (eps(s), w) |-M'* (Q, ), then Q contains no state a  A. In other words, the new machine, when started in its

start state, cannot consume w and end up in one of its accepting states. This follows directly from the lemma.

Thus M' accepts precisely the same set of strings that M does.
◼

Appendix B 630 The Theory: Part III

35 Part III: Context-Free Languages and PDAs

In this chapter, we will provide the proofs of three claims that we made introduced in Part III, during our discussion

of the context-free languages.

35.1 Proof of the Greibach Normal Form Theorem
In this section, we prove the result that we stated as Theorem 11.2, namely that, given a context-free grammar G, there

exists an equivalent Greibach normal form grammar G such that L(G) = L(G) – {}.

Recall that a grammar G = (V, , R, S) is in Greibach normal form iff every rule in R has the form:

X → a , where a   and   (V - )*.

So the following kinds of rules violate the Greibach normal form constraints:

• Epsilon productions, i.e., productions of the form A → : given a grammar G, -rules can be removed by the

procedure removeEps that we defined in Section 11.7.4. The resulting grammar G will have the property that

L(G) = L(G) – {}.

• Unit productions, i.e., productions of the form A → B, where B is a single element of V - : given a grammar G,

unit productions can be removed by the procedure removeUnits that we defined in Section 11.8.3. The resulting

grammar G will have the property that L(G) = L(G).

• Productions, such as X → AaB, whose right-hand sides have terminal symbols in positions other than the left-

most. given a grammar G, these productions can be removed by the procedure removeMixed that we defined in

Section 11.8.3. The resulting grammar G will have the property that L(G) = L(G). Note that removeMixed

actually goes farther than we need to, since it removes all terminals except those that stand alone on a right-hand

side. So it will rewrite the rule X → aAB, even though it is in Greibach normal form.

• Productions, such as X → AB, whose right hand side begins with a nonterminal symbol: we must define a new

procedure to handle these productions.

The process of converting a grammar to Chomsky normal form removes all rules in the first three of these classes. So

the algorithm that we are about to present for converting a grammar G to Greibach normal form will begin by

converting G to Chomsky normal form, using the algorithm that we presented in Section 11.8.3. Note, however, that

Greibach normal form allows rules, such as X → aA and X → aABCD, that are not allowed in Chomsky normal form.

So there exist more efficient Greibach normal form conversion algorithms than the one we are about to describe .

Our algorithm will also exploit the following operations that we have described elsewhere:

• Rule substitution allows nonterminals to be replaced, in right-hand sides, by the strings that they can derive.

Suppose that G = (V, , R, S) contains a rule r of the form X → Y, where  and  are elements of V* and Y 

(V - ). Let Y → 1 | 2 | … | n be all of G’s Y rules. And let G be the result of removing from R the rule r and

replacing it by the rules X → 1, X → 2, …, X → n. Then Theorem 11.3 tells us that L(G) = L(G).

• The procedure removeleftrecursion, which we defined in Section 15.2.2 as part of our discussion of top-down

parsing, removes direct left-recursion and replaces it by right-recursion. So, for example, if the A rules of G are

{A → Ab, A → c}, removeleftrecursion will replace those rules with the rules {A → cA, A → c, A → bA, A

→ b}. Note that the right-hand side of every rule that is introduced by removeleftrecursion begins with either a

terminal symbol or an element of (V - ). None of these right-hand sides begins with an introduced nonterminal

(such as A).

Appendix B 631 The Theory: Part III

Example 35.1 Using Substitution to Convert a Very Simple Grammar

To see how these procedures are used, consider the following grammar, which is in Chomsky normal form but not in

Greibach normal form:

 S → AB

 A → XY | c

 X → a

 Y → b

 B → c

To convert this grammar to Greibach normal form, we:

1. Use rule substitution to replace the rule S → AB with the rules S → XYB and S → cB (since A can derive XY and

c). The second of these new rules is in Greibach normal form.

2. Use rule substitution on the first of the new rules and replace it with the rule S → aYB (since X can derive a).

This new rule is in Greibach normal form.

3. Use rule substitution to replace the rule A → XY with the rule A → aY (since X can derive a). This new rule is in

Greibach normal form.

Since the remaining three rules are already in Greibach normal form, the process ends with the grammar containing

the rules {S → aYB, S → cB, A → aY, X → a, Y → b, B → c}.

Example 35.2 Dealing with Left Recursion

But now consider the following grammar:

 S → SA | BA

 A → a

 B → b

The first rule is left-recursive. If we apply rule substitution to it, we get two new rules, S → SSA and S → BAA. But

now we still have a rule whose left-hand side begins with S. We can apply rule substitution again, but no matter how

many times we apply it, we will get a new rule whose left-hand side begins with S. To solve this problem, we must

exploit removeleftrecursion to eliminate direct left-recursion before we apply rule substitution. Doing that, we get:

 S → BAS | BA

 A → a

 B → b

 S → AS | A

Now, to convert this grammar to Greibach normal form, we:

1. Use rule substitution to replace the rule S → BAS with the rule S → bAS. This new rule is in Greibach normal

form.

2. Use rule substitution to replace the rule S → BA with the rule S → bA. This new rule is in Greibach normal form.

3. Use rule substitution to replace the rule S → AS with the rule S → aS. This new rule is in Greibach normal

form.

4. Use rule substitution to replace the rule S → A with the rule S → a. This new rule is in Greibach normal form.

The remaining two rules are already in Greibach normal form, so the process terminates.

Appendix B 632 The Theory: Part III

More realistic grammars typically contain more than a few nonterminals and those nonterminals may derive each other

in arbitrary ways. To handle such grammars, we need a systematic way to organize the substitutions that will be

performed.

So the conversion algorithm we will exploit is the following. It will return a new grammar it calls GG.

 converttoGreibach(G: CFG in Chomsky normal form) =

1. Choose an ordering of the nonterminals in G. Any ordering will work as long as the start symbol comes first.

Let GG initially be G.

2. Rewrite the rules of GG so that each rule whose left-hand side is one of G’s original nonterminals is in one

of the following two forms:

• X → a , where a   and   (V - )* (in other words, the rule is in Greibach normal form), or

• X → Y , where Y  V -  and Y occurs after X in the ordering defined in step 1.

Call the constraint we have just described the rule-order constraint. Note that, if any of G’s rules are directly

left-recursive, this step will add some new rules whose left-hand sides are new nonterminals. We will not

require that these new rules satisfy the rule-order constraint, since the new nonterminals are unnumbered.

But note that no newly introduced nonterminal will occur as the first symbol in any rule’s right-hand side.

3. Consider each of G’s original nonterminals, starting with the highest numbered one, and working backwards.

For each such nonterminal N, perform substitutions on the rules in GG so that the right-hand sides of all N

rules begin with a terminal symbol.

4. Consider each nonterminal N that was introduced by removeleftrecursion. Perform substitutions on the rules

of GG so that the right hand sides of all N rules start with a terminal symbol.

5. Return GG.

The grammar GG that converttoGreibach returns will be in Greibach normal form. And L(GG) = L(G). We’ll now

describe how to perform steps 2, 3, and 4. Define Ak to be the kth nonterminal, as defined in step 1.

Step 2: we will first rewrite all the A1 rules so that they meet the rule-order constraint. Then we’ll do the same for the

A2 rules, and so forth. For each k, as we begin to transform the rules for Ak, we assume that all rules for nonterminals

numbered from 1 to k-1 already satisfy the rule-order constraint.

Any Ak rule whose right-hand side starts with a terminal symbol already satisfies the constraint and can be ignored.

But we must consider all Ak rules of the form:

 Ak → Aj

Group those rules into the following three cases and consider them in this order:

i. j > k: no action is required.

ii. j < k: replace the rule Ak → Aj by the set of rules that results from substituting, for Aj, the right-hand sides

of all the Aj rules. Since all Aj rules have already been transformed so that they satisfy the rule-order

constraint, the right-hand sides of all Aj rules start with either terminal symbols or nonterminals numbered

greater than j. They may still be numbered less than k, however. If any of them are, repeat the substitution

process. Since the indices must increase by at least 1 each time, it will be necessary to do this no more than

k-1 times.

iii. j = k: all such rules are of the form: Ak → Ak. They are directly left-recursive. Use removeleftrecursion to

remove the left-recursion from all Ak rules. Recall that removeleftrecursion will create a new set of Ak rules.

The right-hand side of each such rule will begin with a string that corresponds to the right-hand side of some

nonrecursive Ak rule. But, as a result of handling all the rules in case 2, above, all of those right-hand sides

must start with either a terminal symbol or a non-terminal symbol numbered above k. So all Ak rules now

satisfy the rule-order constraint.

Example 35.3 Performing Step 2 of the Conversion Algorithm

We’ll begin with the following grammar in Chomsky normal form:

Appendix B 633 The Theory: Part III

 S → SB | AB | d

 A → SA | a

 B → SA

We’ll order the three nonterminals S, A, B. So first we must rewrite the three S rules so that they satisfy the rule-order

constraint. The second and third of them already do. But we must rewrite the first one, which is left-recursive. Using

removeleftrecursion, we get the new grammar:

 S → AB | ABS | d | dS

 A → SA | a

 B → SA

 S → B | BS

Now we consider the A rules. The second one starts with a terminal symbol, but the first one violates the rule-order

constraint since A is numbered 2 and S is numbered 1. We use rule substitution and replace it with four new rules,

one for each S rule. That produces the following set of A rules:

 A → ABA | ABSA | dA | dSA | a

But now the first two of these are left-recursive. So we use removeleftrecursion and get the following set of A and A
rules. The A rules now satisfy the rule-order constraint:

 A → dA | dAA | dSA | dSAA | a | aA

 A → BA | BAA | BSA | BSAA

Finally, we consider the single B rule, B → SA. It fails to satisfy the rule-order constraint since B is numbered 3 and

S is numbered 1. We use rule substitution and replace it with four new rules, one for each S rule. That produces the

following set of B rules:

 B → ABA | ABSA | dA | dSA

The first two of these fail to satisfy the rule-order constraint since B is numbered 3 and A is numbered 2. So we use

rule substitution again. The first B rule is replaced by the rules:

B → dABA | dAABA | dSABA | dSAABA | aBA | aABA

And the second B rule is replaced by the rules:

 B → dABSA | dAABSA | dSABSA | dSAABSA | aBSA | aABSA

At this point, the complete grammar is the following (where the B rules are broken up just for clarity):

 S → AB | ABS | d | dS

 A → dA | dAA | dSA | dSAA | a | aA

 B → dA | dSA

 B → dABA | dAABA | dSABA | dSAABA | aBA | aABA

 B → dABSA | dAABSA | dSABSA | dSAABSA | aBSA | aABSA

 S → B | BS

 A → BA | BAA | BSA | BSAA

This grammar satisfies the rule-order constraint. But it is substantially larger and messier than the original grammar

was. This is typical of what happens when a grammar is converted to Greibach normal form.

Appendix B 634 The Theory: Part III

At the end of step 2, all rules whose left-hand sides contain any of G’s original nonterminals satisfy the rule-order

constraint. Note also that step 2 preserves the three properties initially established by conversion to Chomsky normal

form: There are no -rules, there are no unit productions, and, in every right-hand side, all symbols after the first must

be nonterminals.

Step 3: let n be the number of original nonterminals in G. Then An is the last of them (given the order from step 1).

The right-hand sides of all An rules must begin with a terminal symbol. This must be true since there are no original

nonterminals numbered higher than n. Now consider the An-1 rules. Their right-hand sides must begin with a terminal

symbol or An. Use substitution to replace all the rules whose right-hand sides start with An. After doing that, the right

hand sides of all the An-1 will all start with terminal symbols. Continue working backwards until the A1 rules have

been processed in this way. This step also preserves the three properties initially established by conversion to

Chomsky normal form. So, at the end of this step, all rules whose left-hand sides contain any of G’s original

nonterminals are in Greibach normal form.

Step 4: the removeleftrecursion procedure introduces new nonterminal symbols and new rules with those symbols as

their left-hand sides. So there will be new rules like S → AS | A. The new nonterminals are independent of each

other, so the right-hand sides of all of their rules consist only of terminals and original nonterminals. If r is one of

those rules and r is not already in Greibach normal form then it is N → Aj for some original nonterminal Aj. As a

result of step 3, all Aj rules are already in Greibach normal form. So a single substitution for Aj will replace r by a set

of N rules in Greibach normal form. This step preserves all of the properties that were true at the end of step 3. So, at

the end of this step, GG is in Greibach normal form.

Example 35.4 Performing Steps 3 and 4 of the Conversion

We’ll continue with the grammar from Example 35.3. After step 2, it was:

 S → AB | ABS | d | dS

 A → dA | dAA | dSA | dSAA | a | aA

 B → dA | dSA

 B → dABA | dAABA | dSABA | dSAABA | aBA | aABA

 B → dABSA | dAABSA | dSABSA | dSAABSA | aBSA | aABSA

 S → B | BS

 A → BA | BAA | BSA | BSAA

Step 3: all the B rules must be in Greibach normal form. It turns out that, in this example, the A rules are also. But

then we must consider the S rules. The first two of them have right-hand sides that do not begin with terminal symbols.

So they must be rewritten using substitution. After doing that, the complete set of S rules is:

 S → dAB | dAAB | dSAB | dSAAB | aB | aAB

 S → dABS | dAABS | dSABS | dSAABS | aBS | aABS

 S → d | dS

Step 4: we must use substitution on both of the S rules. The two of them will be replaced by the following set of S
rules:

 S → dA | dSA

 S → dABA | dAABA | dSABA | dSAABA | aBA | aABA

 S → dABSA | dAABSA | dSABSA | dSAABSA | aBSA | aABSA

 S → dAS | dSAS

 S → dABAS | dAABAS | dSABAS | dSAABAS | aBAS | aABAS

 S → dABSAS | dAABSAS | dSABSAS | dSAABSAS | aBSAS | aABSAS

Appendix B 635 The Theory: Part III

And similarly for the A rules. We’ll skip writing them all out. There are 14 (the number of B rules)  4 (the number

of A rules) = 56 of them.

So the original, 6-rule grammar in Chomsky normal form becomes a 118-rule grammar in Greibach normal form.

Theorem 35.1 Greibach Normal Form

Theorem: Given a context-free grammar G, there exists an equivalent Greibach normal form grammar GG such that

L(GG) = L(G) – {}.

Proof: The proof is by construction, using the algorithm converttoGreibach described above.
◼

35.2 Proof that the Deterministic Context-Free Languages are Closed
Under Complement

In this section, we prove the result that we stated as Theorem 13.10:

Theorem 35.2 Closure Under Complement

Theorem: The deterministic context-free languages are closed under complement.

Proof: The proof is by construction. The construction exploits techniques that we used to prove several other

properties of the context-free languages, but now we must be careful to preserve the property that the PDA we are

working with is deterministic.

If L is a deterministic context-free language over the alphabet , then L$ is accepted by some deterministic PDA M =

(K,   {$}, , , s, A). We need to describe an algorithm that constructs a new deterministic PDA that accepts

(L)$. The algorithm will proceed in two main steps:

1. Convert M to an equivalent PDA M that is in a constrained form that we will call deterministic normal

form.

2. From M, build M# to accept (L)$.

The design of deterministic normal form is motivated by the observation that a deterministic PDA may fail to accept

an input string w for any one of several reasons:

1. Its computation ends before it finishes reading w.

2. Its computation ends in an accepting state but the stack is not empty.

3. Its computation loops forever, following -transitions, without ever halting in either an accepting or a

nonaccepting state.

4. Its computation ends in a nonaccepting state.

If we attempt to build M# by simply swapping the accepting and nonaccepting states of M, we will build a machine

that correctly fails to accept every string that M would have accepted (i.e., every string in L$). But it cannot be

guaranteed to accept every string in (L)$. To do that, we must also address issues 1 – 3 above. Converting M to

deterministic normal form will solve those problems since any deterministic PDA in restricted normal form will, on

any input w$:

• read all of w,

• empty its stack, and

• halt.

Appendix B 636 The Theory: Part III

One additional problem is that we don’t want to accept L(M). That includes strings that do not end in $. We must

accept only strings that do end in $ and that are in (L)$.

Given a deterministic PDA M, we convert it into deterministic normal form in a sequence of steps, being careful, at

each step, not to introduce nondeterminism.

In the first step, we will create M, which will contain two complete copies of M’s states and transitions. M will

operate in the first copy until it reads the end-of-input symbol $. After that, it will operate in the second copy. Call

the states in the first copy the pre$ states. Call the states in the second copy the post$ states. If q is a pre$ state, call

the corresponding post$ state q. If q is an accepting state, then add q to the set of accepting states and remove q from

the set. If M contains the transition ((q, $, ), (p, )) and q is a pre$ state, remove that transition and replace it with

the transition ((q, $, ), (p, )). Now view M as a directed graph but ignore the actual labels on the transitions. If

there are states that are unreachable from the start state, delete them. If M was deterministic, then M also is and L(M)
= L(M).

If M ever follows a transition from a post$ state that reads any input then it must not accept. So we can remove all

such transitions without changing the language that is accepted. Remove them. Now all transitions out of post$ states

read no input. So they are one of the following:

• stack--transitions: ((p, , ), (q, )) (nothing is popped), or

• stack-productive transitions: ((p, , ), (q, )), where   + (something is popped).

Next we remove all stack--transitions from post$ states. To construct an algorithm to do this, observe:

• Since M is deterministic, if it contains the stack--transition ((p, , ), (q, )) then it contains no other transitions

from p.

• If ((p, , ), (q, )) ever plays a role in causing M to accept a string then there must be a path from q that eventually

reaches an accepting state and clears the stack.

So we can eliminate the stack--transition ((p, , ), (q, )) as follows: First, if q is accepting, make p accepting. Next,

delete ((p, , ), (q, )) and replace it by transitions that go directly from p to wherever q could go, skipping the move

to q. So consider every transition ((q, , ), (r, )). If  = , then add the transition ((p, , ), (r, )). Otherwise, if

 =  then add the transition ((p, , ), (r, )). Otherwise, suppose that  is 12…n. If  = 12…k for some k  n,

then add the transition ((p, , ), (r, k+1 … n)). In other words, don’t bother to push the part that the second transition

would have popped off. If  =  for some   , then add the transition ((p, , ), (r, )). In other words, skip

pushing  and then popping it. Just pop the rest of what the second transition would pop. If any new stack--transitions

from p have been created, then replace them as just described except that, if the process creates a transition of the form

((p, , ), (p, )), where  is not shorter than  from the first transition that was removed, then the new transition is

not describing a path that can ever lead to M clearing its stack and accepting. So simply delete it. Continue until all

stack--transitions have been removed. With a bound on the length of the string that gets pushed when a new transition

is created, this process must eventually halt. Since there was no nondeterminism out of q, there won’t be

nondeterminism out of p when p simply copies the transitions from q.

At this point, M has the following properties:

• Every transition out of a post$ state pops at least once character off the stack.

• No transition out of a post$ state reads any input.

• All accepting states are post$ states.

Next, we consider problem 2 above (M doesn’t accept because its stack isn’t empty). That problem would go away if

our definition of acceptance were by accepting state alone, rather than by accepting state and empty stack. Recall that,

in Example 12.14, we presented an algorithm that constructs, from any PDA that accepts by accepting state and empty

stack, an equivalent one that accepts by accepting state alone. The resulting PDA has a new start state s that pushes

a new symbol # onto the stack. It also has a single accepting state, a new state qa, which is reachable only when the

Appendix B 637 The Theory: Part III

original machine would have reached an accepting state and had an empty stack. Our next step will be to apply that

algorithm to M to produce M. Once we’ve done that, we can later make qa nonaccepting and thus reject every string

in L$. At the same time, we are assured that doing so will not cause M to reject any string that was not in L$, since

no such string can drive M to qa. The only issue we must confront is that the algorithm of Example 12.14 may

convert a deterministic PDA into a nondeterministic one because transitions into qa may compete with other transitions

that were already present (as one does in the example we considered when we presented the algorithm). But that

cannot happen in the machine M that results when the algorithm is applied to M. Each new transition into the new

state qa has the form ((a, , #), (qa, )), where a is a post$ state. No transition in M pops # since # is not in its stack

alphabet. And there are no stack--transitions from a post$ state in M (because all such transitions have already been

eliminated). So we can guarantee that M is equivalent to M and is still deterministic. We also know that, whenever

M is in any state except the new start state s and the new accepting state qa, there is exactly one # on the stack and

it is on the bottom.

Note that we have not switched PDA definitions. We will still accept by accepting state and empty stack. So it will

be necessary later to make sure that the final machine that we build can empty its stack on any input it needs to accept.

Next we consider problem 1 above (M halts without reading all its input). We must complete M, by adding a dead

state, in order to guarantee that, from any configuration in which there may be unread input characters (i.e., any

configuration with a pre$ state), M has a move that it can make. The problem is that it is not sufficient simply to

assure that there is a move for every input character. Consider for example a PDA M#, where  = {a, b},  = {#, 1,

2}, and the transitions from state q are ((q, a, 1), (p, 2)) and ((q, b, 1), (r, 2)). If M# is in state q and the character on

the top of the stack is 2, M# cannot move.

We can’t solve this problem just by requiring that there be some element of  for each (input character, stack character)

pair because we allow arbitrarily long strings to be popped from the stack on a single move. For example, again let 

= {a, b} and  = {#, 1, 2}. Suppose that the transitions from state q are:

((q, a, 12), (p, 2)),

((q, a, 21), (p, 2)),

((q, b, 122), (r, 2)),

((q, b, 211), (r, 2)).

If the top of the stack is 22 and the next input character is a or b, M# cannot move.

So our next step is to convert M into a new machine M with the following property: every transition, except the

one from the start state s, pops exactly one symbol. Note that this is possible because, in every state except s and the

one accepting state qa, # is on the bottom of the stack. And there are no transitions out of qa. So there always exists

at least one symbol that can be popped. To build M we use a slight variant of the technique we used in the algorithm

convertpdatorestriced that we described in Section 12.3. We replace any transition that popped nothing with a set of

transitions, one for each element of . These transitions pop a symbol and then push it back on. And we replace any

transition that popped more than one symbol with a sequence of transitions that pops them one at a time. To guarantee

that no nondeterminism is introduced when we do this, it is necessary to be careful when creating new states as

described in step 6. If, from some state q, there is more than one transition that pops the same initial sequence of

characters, all of them must stay on the same path until they actually pop something different or read a different input

character.

Next we add two new dead states, d and d. The new dead state d will contain strings that do not end in $. The new

dead state d will contain strings that do end in $. For every character c  , add the transition ((d, c, ), (d, )). So,

if M ever goes to d, it can loop in d and finish reading its input up until it hits $. Then add the transition ((d, $, ),

(d, )). So M moves from d to d when it encounters $. Finally, we must make sure that, from d, M can clear its

stack. So, for every symbol  in , add the transition ((d, , ), (d, )). After adding those transitions, every symbol

except # can be removed. Note that none of these new transitions compete with each other, so M is still deterministic.

Appendix B 638 The Theory: Part III

Now we can modify M so that it always has a move to make from any pre$ state. To do this, we add transitions into

the new dead states. M always has a move from s, so we don’t have to consider it further. In order to guarantee

that M will always be able to make a move from any other pre$ state q, it must be the case that, for every (q, c, ),

where q is a pre$ state, c    {$}, and   , there exists some (p, ) such that either:

• M contains the -transition ((q, , ), (p, )), or

• M contains the transition ((q, c, ), (p, )).

Since M is deterministic, it is not possible for M to contain both those transitions. Now consider any stack symbol

 and state q. If M contains an -transition ((q, , ), (p, )), no others from q that pop  are required. If it does not,

then there must be one for each character c in   {$}. If there is no transition ((q, $, ), (p, )), then we add to M

the transition ((q, $, ), (d, )). If, for any other character c, there is no transition ((q, c, ), (p, )), then we add to M

the transition ((q, c, ), (d, )).

At this point, we know that, until it has read all its input, M will always have a move to make. And we know that

any string that drives it to d is in (L)$. So, in the complement machine we are eventually trying to build, d should

accept any strings it sees. To do that, it must first clear the stack.

Next we make sure that, from every post$ state except qa, M always has a move it can make. There is no input to

be read, so we must assure that, for every post$ state q (except qa) and every stack symbol   , there is a move.

When M would have died, M needs to move to a state that knows that $ has been read and that can clear the stack

(so that its complement will eventually be able to accept). That state is d. So, if (q, , ) is a triple for which no move

is defined, add the transition ((q, , ), (d, )).

Next, we must make sure that M never gets into a loop that is not making progress toward at least one of the two

things that must occur before it can accept: emptying the stack and consuming the input. M determines its next

move by considering only its current state, the top stack symbol and the current input character. Any transition that

reads an input character makes progress, so we need only worry about those that do not. Suppose that some triple (q,

, ) matches against M’s current configuration. If that triple ever matches again and no progress has been made,

then none will ever be made because M, since it is deterministic, will simply do the same thing the second time. So

we must find all the triples with the property that, when they match M’s configuration, no progress occurs. Call

these triples dead triples. We now build a new machine M which is identical to M except that all dead triples that

originate in a pre$ state will drive M to d and all dead triples that originate in a post$ state will drive M to d. So

M = M except:

• If (q, , ) is a dead triple and q is a pre$ state then delete any transition ((q, , ), (p, )) and replace it by ((q, ,

), (d, )).

• If (q, , ) is a dead triple and q is a post$ state then delete any transition ((q, , ), (p, )) and replace it by ((q, ,

), (d, )).

Now M has the following properties:

1. On input w$, if M’s computation would have ended before all of w$ were read, M will be able to reach state d
and have the stack empty except for #.

2. On input w$, if M’s computation would have looped forever, following -transitions, without ever halting in either

an accepting or a nonaccepting state, M will be able to reach state d and have the stack empty except for #.

3. On input w$, iff M’s computation would have accepted, M will be in state qa and its stack will be empty.

4. On any input that does not end in $, M will be in some pre$ state.

Our final step will be to construct M# that accepts (L)$. We’ll do that by starting with M, making qa nonaccepting,

and creating a path by which d can pop the remaining # and go to an accepting state. But, before we can do that, we

must consider two remaining cases:

Appendix B 639 The Theory: Part III

5. On input w$, M would have finished reading w$ but not emptied its stack.

6. On input w$, M would have finished reading w$ and landed in a nonaccepting state.

We need to make sure that, in both of those cases, our final machine will be able to accept. Note that we only want to

accept after reading $, so we need only worry about what M should do once it has reached some post$ state. We

first guarantee that M can clear its stack except for #. We do that as follows: For every post$ state q in M (except

qa) and every symbol c in , if M does not contain a transition for the triple (q, , c), add the transition ((q, , c), (d,

)). (If M already contains a transition for the triple (q, , c) then that transition must be on a path to clearing the

stack or it would already have been eliminated.)

It’s now the case that every string of the form w$, where w  *, will drive M to some post$ state and either the

state is qa, in which case the stack will be empty, or the state is something else, in which case the stack contains exactly

#. So our next step is to add a new state d. From every post$ state q except qa and any states from which there is a

transition into qa, add the transition ((q, , #), (d, )). Since there were no transitions on # from any of those states,

the resulting machine is still deterministic.

At this point, M is in deterministic normal form. We can now define:

 convertPDAtodetnormalform(M: deterministic PDA) =

1. Return M, constructed as described above.

Note that M still accepts L$ and it is deterministic. It is also in restricted normal form (as defined in Section 12.3.2).

All that remains is to build M# to accept (L)$. Let M# = M except that d will be the only accepting state. There

are no transitions out of d, so there is never competition between accepting and taking some transition. All and only

strings of the form w$, where w  * and w$ was not accepted by M will drive M# to d with an empty stack. So M#

accepts (L)$ and it is deterministic.
◼

35.3 Proof of Parikh’s Theorem
The background for Parikh’s Theorem and the definitions of  and  are given in Section 13.7.

Theorem 35.3 Parikh’s Theorem

Theorem: Every context-free language is letter-equivalent to some regular language.

Proof: We will break the proof into two parts. We will first show that, for every context-free language L, (L) is

semilinear. Then we will show that if (L) is semilinear then L is letter-equivalent to some regular language.

For purposes of the following discussion, define:

• The sum of two vectors v1 and v2, written v1 + v2, to be the pairwise sum of their elements. So (1, 2) + (5, 7) = (6,

9).

• The product of an integer n and a vector v = (i1, i2, … ik), written nv, to be (ni1, ni2, … nik). So 4(1, 2) = (4, 8).

A set V of integer vectors of the form (i1, i2, … ik) is linear iff there exists a finite basis set B and a second finite set C

of vectors c1, c2, …, such that:

V = {v: (v = b + n1c1 + n2c2 + … +n|C|c|C|)}, where n1, n2, …, n|C| are integers, b  B, and c1, c2, …, c|C|  C.

For example:

• {(2i, i) : 0  i} = {(0, 0), (2, 1), (4, 2), (6, 3), …} is linear: B = {(0, 0)} and C = {(2, 1)}.

Appendix B 640 The Theory: Part III

• {(i, j) :0  i  j} = {(0, 0), (0, 1), (0, 2), (1, 3), …, (3, 8), …} is linear: B = {(0, 0)} and C = {(0, 1), (1, 1)}.

A set V of integer vectors of the form (i1, i2, … ik) is semilinear iff it is the finite union of linear sets. For example, V

= {(i, j) : i < j or j < i} is semilinear because V = V1  V2, where:

• V1 = {(0, 1), (0, 2), …, (1, 2), (1, 3), …, (3, 8), …} is linear: B = {(0, 1)} and C = {(0, 1), (1, 1)}, and

• V2 = {(1, 0), (2, 0), …, (2, 1), (3, 1), …, (8, 3), …} is linear: B = {(1, 0)} and C = {(1, 0), (1, 1)}.

The core of the proof of Parikh’s Theorem is a proof of the claim that if a language L is context-free, then (L) is

semilinear. In fact, sometimes that claim, which we prove next, is called Parikh’s Theorem.

Let L be an arbitrary context-free language. Then L is defined by some context-free grammar G = (V, , R, S). Let n

= |V - | (i.e., the number of nonterminals in G) and let b be the branching factor of G (i.e., the length of the longest

right hand side of any rule in R). Every string in L has at least one parse tree that can be generated by G. For each

such string, choose one of its “smallest” parse trees. In other words, choose one such that there is no other one with

fewer nodes. Let T be the set of all such chosen trees. So T contains one smallest tree for each element of L. For any

parse tree t, let yield(t) be the string that is the yield of t.

Let t be an arbitrary element of T. Then either:

• The tree t contains no paths that contain repeated nonterminals. By the same argument we used in the proof of the

Pumping Theorem, the maximum length of the yield of t is bn. Call the subset of T that contains all such trees

Short. Short contains a finite number of elements (because there is a bound on the length of the yields and each

yield may correspond to only one tree).

• The tree t contains at least one path that contains at least one repeated nonterminal, as shown in Figure 35.1. As

we did in the proof of the Pumping Theorem, we can choose one such path and find the first repeated nonterminal,

coming up from the bottom, along that path. Call the subtree rooted at the upper instance [1] and the subtree rooted

at the lower instance [2]. We can excise the subtree rooted at [1] and replace it by the subtree rooted at [2]. Call

the resulting tree t. There exist values for u, v, x, y, and z such that yield(t) = uvxyz, yield(t) = uxz, vy  , |vxy| 

bn+1, |uxz| < |uvxyz|, and uxz is also in L. If t still contains any paths that contain any repeated nonterminals, then

another vy can be pumped out to yield yet another shorter string in L, and so forth until a string whose parse tree

is in Short is produced.

 S

 X [1]

 X [2]

 u v x y z

 yield(t)

 Figure 35.1 A parse tree whose height is greater than n

Appendix B 641 The Theory: Part III

Let t be an arbitrary element of Short. We will define produce(t) to be the smallest set of strings that includes yield(t)

plus all the longer strings in L that pump down to yield(t). Or think of it as the smallest set that includes yield(t) and

all the longer strings that can be generated by pumping into t.

Since there is a bound on |vy|, the number of distinct values for vy is finite. For any tree t in Short, define pumps(t) to

be the set of vy strings that can be pumped out of any element of produce(t) by a single pumping operation. The value

of pumps(t) depends only t and the rules of G.

We now return to describing strings just by the number of each character that they contain. Let w be an element of

produce(t). Then w contains all the characters in yield(t). It also contains all the characters in each vy pair that was

pumped out of w in the process of shrinking w down to yield(t). Let VY be a list of all those vy pairs (so repeats are

included) and let q be the length of VY (i.e., the number of times some string vy was pumped out of w to produce

yield(t)). Note that each element of VY must be an element of pumps(t). Then:

 (w) = (yield(t)) +)(
1


=

q

i

iVY .

We can now prove that (produce(t)) is linear, with:

B = {(yield(t))} and C = pumps(t).

For this to be true, it must be the case that:

• Let w be an arbitrary element of produce(t). Then (w) is a linear combination of (yield(t)), the single vector in

B, and some finite number of vectors c1, c2, …, all of which are drawn from C. We just saw that that is true.

• Let v be an arbitrary vector that is a linear combination of (yield(t)) and some finite number of vectors c1, c2, …,

all of which are drawn from C. Then there must exist some string w in produce(t) such that (w) = v. This follows

from the fact that the Pumping Theorem tells us that any vy string that can be pumped out can also be pumped in

any number of times.

Now we can prove that (L) is semilinear. There are a finite number of elements in Short. Every string in L is an

element of produce(t) for some t in Short. So (L) is the finite union of linear sets:

(L) = 
Shortt

tproduce


))((.

The last step in the proof of Parikh’s Theorem is to show that, given any semilinear set V, there exists a regular

language L such that (L) = V. Let -1 be a function that maps from an integer vector v to the lexicographically first

string w such that (w) = v. For example, if  = {a, b, c}, then -1((2, 1, 3)) = aabccc.

We begin by showing that, given any linear set V1, there exists a regular language L1 such that (L1) = V1. Since V1

is linear, it can be described by the sets B and C. From them we can produce a regular expression that describes L1.

Let B = {b1, b2, …} and let C = {c1, c2, …}. Then define R(V1) to be the following regular expression:

 (-1(b1)  -1(b2)  …)(-1(c1)  -1(c2)  …)*.

If L is the language defined by R(V1), then (L) = V1.

For example, if  = {a, b, c}, and V is defined by B = {(1, 2, 3)} and C = {(1, 0, 0), (0, 0, 1)}, then R(V) =

 (abbccc)(a  c)*.

Now we return to the problem of showing that, given any semilinear set V, there exists a regular language L such that

(L) = V. If V is semilinear then it is the finite union of linear sets V1, V2, …. Then L is the language described by

the regular expression:

Appendix B 642 The Theory: Part III

R(V1)  R(V2) …

So we have:

• If L is context-free then (L) is semilinear.

• If (L) is semilinear then there is some regular language L such that (L) = (L).

Thus, if L is context-free, L is letter-equivalent to some regular language.
◼

Appendix B 643 The Theory: Part IV

36 Part IV: Turing Machines and Undecidability

In this chapter, we will prove some of the claims that were made but not proved in Part IV.

36.1 Proof that Nondeterminism Does Not Add Power to Turing
Machines

In this section we complete the proof of Theorem 17.2:

Theorem 17.2 Nondeterminism in Deciding and Semideciding Turing Machines

Theorem: If a nondeterministic Turing machine M = (K, , , , s, H) decides a language L, then there exists a

deterministic Turing machine M' that decides L. If a nondeterministic Turing machine M semidecides a language L,

then there exists a deterministic Turing machine M' that semidecides L.

Proof Discussion: The proof is by construction of M'. When we sketched this proof in Section 17.3.2, we suggested

using breadth-first search as the basis for the construction. The main obstacle that we face in doing that is

bookkeeping. If we use breadth-first search, then M will need to keep track of the partial paths that it is exploring.

One approach would be for it to start down path 1, stop after 1 move, remember the path, go one move down path 2,

remember it, and so forth, until all paths have been explored for one step. It could then return to path 1 (which has

been stored somewhere on the tape), explore each of its branches for one more move, store them somewhere, find

path 2 on the tape, continue it for one more move, and so forth. But this approach has two drawbacks:

• The amount of memory (tape space) required to keep track of all the partial paths grows exponentially with the

depth of the search, and

• Unlike conventional computers with random access memory, the work required for a Turing machine to scan the

tape to find each path in turn and then shift everything to allow for insertion of new nodes into a path could

dominate all the work that it would do in actually exploring paths.

Iterative deepening, a hybrid between depth-first search and breadth-first search, avoids both the infinite path pitfall

of depth-first search and the exponentially growing memory requirement of breadth-first search. The idea of iterative

deepening is simple. We can state the algorithm as follows:

 ID(T: search tree) =

1. d = 1. /* set the initial depth limit to 1.

2. Loop until a solution is found:

2.1. Starting at the root node of T, use depth-first to explore all paths in T of depth d.

2.2. If a solution is found, exit and return it.

2.3. Otherwise, d = d + 1.

Iterative deepening avoids the infinite path pitfall of depth-first search by exploring each path to depth d before trying

any path to depth d+1. So, if there is a finite-length path to a solution, it will be found. And iterative deepening avoids

the memory pitfall of breadth-first search by throwing away each partial path when it backs up. Of course, we do pay

a price for that: each time we start down a path of length d+1 we recreate that path up to length d. That seems like a

heavy price, but let’s look at it more closely.

Figure 36.1 A simple search tree

Appendix B 644 The Theory: Part IV

Consider a tree such as the one shown in Fgiure 36.1. Each node in the tree represents a configuration of M and each

edge represents a step in a computational path that M might follow.Observe first that, in iterative deepening, the nodes

at the top of the tree get generated a lot of times. The nodes at the very bottom get generated only once, the ones at

the level above that only twice, and so forth. Fortunately, there aren’t very many nodes at the top of tree. In fact, the

number of nodes at any level d is larger than the total number of nodes at all previous levels by approximately a factor

of (b-1), where b is the branching factor of the tree.

So starting over every time is not as bad as it at first seems. In fact, the relatively inefficient implementation of

iterative deepening that we will use examines only a factor of approximately h (the height of the tree that is eventually

explored) more nodes than does a simple breadth-first search to the correct depth. See B 647 for a proof of this claim.

Proof: We can now return to the task of proving that, for any nondeterministic Turing machine M = (K, , , , s, H)

there exists an equivalent deterministic Turing machine M'. The proof is by construction of a deterministic M that

simulates the execution of M. M will operate as follows: start with the initial configuration of M. Use iterative

deepening to try longer and longer computational paths. If any path eventually accepts, M will discover that and

accept. If all paths reject, M will discover that and reject. So, if M is a deciding Turing machine, M will always halt.

If M is only a semidecider, however, then M may loop forever.

All that remains is to describe how to perform iterative deepening on a Turing machine. Iterative deepening is usually

implemented as a form of bounded depth-first search. For each depth-limited search, a stack is used to keep track of

the path so far and the search process backs up whenever it reaches its depth limit. To simplify our implementation,

we will choose an approach that does not require a stack. Instead we will create each path, starting from the root, each

time.

 Tape 0: Input: this tape will never change so the original input is always available

 Tape 1: Copy of input: to be changed as needed on each path

 P

 Tape 2: Sequence of choices that determine the current path

Figure 36.2 Iterative deepening on a three-tape Turing machine

M will use three tapes, as shown in Figure 36.2. Tapes 1 and 2 correspond to the current path. To see how M works,

we will first define a subroutine P that uses tapes 1 and 2 and follows one specific path for some specified number of

steps. Then we will see how M can invoke P on a sequence of longer and longer paths.

Suppose we want to specify some one specific path through the search tree that M explores. To do this, we first need

to be able to write down the set of alternatives for each move in some order so that it makes sense to say, “Choose

option 1 this time. Choose option 2 the second time, and so forth”. Imagine that we have that. (We will describe

such a method shortly.) Then we could specify any finite path as a move vector: a finite sequence of integers such as

“2, 5, 1, 3”, which we will interpret to mean: “Follow a path of length 4. For the first move, choose option 2. For

the next, choose option 5. For the third, choose option 1. For the fourth, choose option 3. Halt.” The Turing machine

P that we mentioned above, the one that follows one particular finite path and reports its answer, is then a machine

that follows a move vector such as “2, 5, 1, 3”.

So now we need a way for P to interpret a move vector. To solve this problem we first observe that there is a maximum

number B of branches at any point in M’s execution. For its next move, M chooses from among |K| states to go to,

from among || characters to write on the tape, and between moving left and moving right. Thus

 B = 2|K|||.

Appendix B 645 The Theory: Part IV

Since there are only at most B choices at each point, the largest number that can occur in any move vector for M is B.

Of course, it will often happen that  offers M many fewer choices given its current state and the character under its

read/write head. Suppose that we imagine organizing  so that, for each (q, c) pair, we get a list (in some arbitrary

order) of the moves that M may make if it is in state q and c is under the read/write head. We can enter that information

into an indexable table T as shown in Table 36.1(a). We assume that we can sequentially number both the states and

the elements of . Each move choice is an element of (K    {→, }). But what happens if P is told to choose

move j and fewer than j choices are available? To solve this problem, we will fill out T by repeating the sequence of

allowable moves as many times across each row as necessary to fill up the row. So T will actually be as shown in

Table 36.1(b).

 1 2 3 … B

(state 1, char 1) move choice 1 move choice 2

(state 1, char 2) move choice 1 move choice 2 move choice 3 move choice 4

 … move choice 1

(state 2, char 1) move choice 1 move choice 2 move choice 3

…. move choice 1 move choice 2

(state |K|, char ||) move choice 1

 (a)

 1 2 3 … B

(state 1, char 1) move choice 1 move choice 2 move choice 1 move choice 2 move choice 1

(state 1, char 2) move choice 1 move choice 2 move choice 3 move choice 4 move choice 1

 … move choice 1 move choice 1 move choice 1 move choice 1 move choice 1

(state 2, char 1) move choice 1 move choice 2 move choice 3 move choice 1 move choice 2

…. move choice 1 move choice 2 move choice 1 move choice 2 move choice 1

(state |K|, char ||) move choice 1 move choice 1 move choice 1 move choice 1 move choice 1

 (b)

Table 36.1 A table that lists all of M’s move choices

There are two important things about each row in this table:

• Every entry is a move that is allowed by , and

• Every move that is allowed by  appears at least once.

Also notice that, given a particular nondeterministic Turing machine M, we can build this table and it will contain a

finite number of cells. In addition, there is a finite number |K| of different states that M can be in at any point in

following some path. So, given M, we can build a new Turing machine P to follow one of M’s paths and we can

encode all of the move table, as well as the current simulated state of M, in P’s finite state controller.

 Tape 1: Input

 Tape 2: A move vector such as: 1 3 2 6 5 4 3 6

Figure 36.3 Using two tapes to simulate one path of fixed length

Appendix B 646 The Theory: Part IV

We are now ready to define P (the Turing machine that follows one finite path that M could take). P uses two tapes,

as shown in Figure 36.3. The table T and the current (simulated) state of M are encoded in the state of P, which

operates as follows:

1. For i = 1 to length of the move vector on Tape 2 do:

1.1. Determine c, the character under the read/write head of Tape 1.

1.2. Consider q, the current simulated state of M. If q is a halting state, halt. Otherwise:

1.3. Determine v, the value of square i of the move vector.

1.4. Look in T to determine the value in the row labeled (q, c) and the column labeled v. Call it m.

1.5. Make move m (by writing on tape 1, moving tape 1’s read/write head, and changing the simulated state

as specified by m).

Whatever happens, P halts after at most n steps, where n = |Tape 2|.

Now that we have specified P, we are ready to specify M, the deterministic Turing machine that is equivalent to M.

M uses three tapes: Tape 0 holds the original input to M. It will not change throughout the computation. Tapes 1 and

2 will be used by instantiations of P. M’s job is to invoke P with all paths of length 0, then all paths of length 1, all

paths of length 2, and so forth. For example, suppose that B = 4. Then the value on Tape 2 at the first several calls

by M to P will be: ; 1; 2; 3; 4; 1,1; 1,2; 1,3; 1,4; 2,1; …; 2,4; 3,1; …; 3,4; 4,1; …; 4,4; 1,1,1; 1,1,2; …

To see how M can use P, let’s first consider the simplest case, namely the one on which M is a semideciding machine

that will accept if any path of M accepts; otherwise it will simply loop looking for some accepting path. In this case,

M operates as follows on input w:

1. Write  (corresponding to a path of length 0) on Tape 2.

2. Until P accepts do:

2.1. Copy w from Tape 0 to Tape 1.

2.2. Invoke P (i.e., simulate M for |Tape 2| steps following the path specified on Tape 2).

2.3. If P discovers that M would have accepted then halt and accept.

2.4. Otherwise, generate the lexicographically next string on Tape 2.

Next we consider what must happen if M is to be able to reject as well as to accept. It can only do reject if every path

eventually halts and rejects. So now we need to design M so that it will halt as soon as one of the following things

happens:

• It discovers a path along which M halts and accepts. In this case, M accepts.

• It has tried all paths until they halt, but all have rejected. In this case, M rejects.

The first of these conditions can be checked as described above. The second is a bit more difficult. Suppose that M
discovers that M would halt and reject on the path 2, 1, 4. M must continue to try to find some accepting path. But it

restarts every path at the beginning. How is it to know not to try 2, 1, 4, 1, or any other path starting with 2, 1, 4? It’s

hard to make it do that, but we can make it notice if it tries every path of length n, for some n, and all of them have

halted.

If every path of M halts, then there is some number n that is the maximum number of moves made by any path before

it halts. M should be able to notice that every path of length n halts. At that point, it need not consider any longer

paths. So we’ll modify M so that, in its finite state controller, it remembers the value of a Boolean variable we can

call nothalted, which we’ll initialize to False. Whenever M tries a path that hasn’t yet halted, it will set nothalted to

True. Now consider the procedure that generates the lexicographically next string on tape 2. Whenever it is about to

generate a string that is one symbol longer than its predecessor (i.e., it is about to start looking at longer paths), it will

check the value of nothalted. If it is False, then all paths of the length it was just considering halted. M can quit. If,

on the other hand, nothalted is True, then there was at least one path that hasn’t yet halted. M needs to try longer

paths. The variable nothalted must be reset to False, and the next longer set of paths considered. So M operates as

follows on input w:

Appendix B 647 The Theory: Part IV

1. Write  (corresponding to a path of length 0) on Tape 2.

2. Set nothalted to False.

3. Until P accepts or rejects do:

3.1. Copy w from Tape 0 to Tape 1.

3.2. Invoke P (i.e., simulate M for |Tape 2| steps following the path specified on Tape 2).

3.3. If P discovers that M would have accepted then accept.

3.4. If P discovers that M would not have halted, then set nothalted to True.

3.5. If the lexicographically next string on Tape 2 would be longer than the current one then:

Check the value of nothalted. If it is False, then reject. All paths of the current length halted but

none of them accepted.

Otherwise, set nothalted to False. We’ll try again with paths of the next longer length and see if all

of them halt.

3.6. Generate the lexicographically next string on Tape 2.

If M is a semideciding Turing machine, then M will accept iff M would. If M is a deciding Turing machine, all of its

paths must eventually halt. If one of them accepts, M will find it and accept. If all of them reject, M will notice when

all paths of a given length have halted without accepting. At that point, it will reject. So M is a deciding machine for

L(M).
◼

36.2 An Analysis of Iterative Deepening
Consider a complete tree T with branching factor b and height h. Assume that each node of T, including the root,

corresponds to a state and each edge corresponds to a move from one state to another. We want to compare the number

of moves that will be considered for each of three search strategies.

We first consider a straightforward breadth-first search. There are edges between nodes at level and nodes

at level . So the number of moves that will be considered by breadth-first search, to depth h, will be:

 .

Now suppose that we use standard iterative deepening, defined as follows:

 ID(T: search tree) =

1. d = 1. /* Set the initial depth limit to 1.

2. Loop until a solution is found:

2.1. Starting at the root node of T, use depth-first to explore all paths in T of depth d.

2.2. If a solution is found, exit and return it.

2.3. Otherwise, d = d + 1.

Assume that ID halts with a solution at depth h. Then the number of moves that it considered is:

 at least:

1

1 1

h d
k

d k

b h
−

= =

 
+ 

 
  , and at most:

()

2 2

2

1 1

(1)
()

1

hh d
k h

d k

b h b hb
b b

b

+

= =

− + + 
= =  

− 
  .

The lower bound comes from the fact that ID must have explored at least one path at depth h or it would have halted

at depth h-1. The upper bound corresponds to it finding a solution on the very last path in the tree. To see where that

upper bound formula comes from, notice that ID makes one pass through its loop for each value of d, so we must sum

over all of them. On the dth pass, it does a simple depth-first search of a tree of depth d and branching factor b.

db 1d −
d

1

(1)
()

1

hh
d h

d

b b
b b

b=

−
= = 

−


Appendix B 648 The Theory: Part IV

Now consider a variant of iterative deepening in which, instead of doing a backtracking search at each depth limit d,

we start each path over again at the root. So each path of length 1 is considered. Then each path of length 2 is

considered, starting each from the root. Then each path of length 3 is considered, starting from the root, and so forth.

This is the technique we used in Section 36.1 to prove Theorem 17.2. Because reaching each of the nodes at level

 requires moves, the number of moves that this algorithm considers is:

 at least: , and at most: .

36.3 The Power of Reduction
Define a planar grid to be a set of lines with two properties:

• No two lines are co-linear, and

• Each line is either parallel or perpendicular to every other one.

We’ll call each position at which two lines intersect a grid point or just a point. Now consider the following

problem from [Dijkstra EWD-1248]:

Show that, for any finite set of grid points in the plane, we can colour each of the points either

red or blue such that on each grid line the number of red points differs by at most 1 from the

number of blue points.

A B C

 (a) (b)

Figure 36.4 A grid problem and its corresponding graph version

An instance of this problem could be the grid shown in Figure 36.4(a). The selected grid points are shown as circles.

One way to attack the problem is directly: we could prove the claim using operations on the grid. An alternative is to

reduce the problem to one that is stated in some other terms that give us useful tools for finding a solution.

[Misra 1996] suggests reducing this grid problem to a graph problem. The reduction described there works as follows:

Given a grid and a finite set of points on the grid, construct a graph in which each grid line becomes a vertex and there

is an edge between two vertices iff the corresponding grid lines share one of the given points. The graph that is

produced from our example grid is shown in Figure 36.4(b).

Notice that the number of edges in the constructed graph is finite (since the number of points in the grid problem is

finite). The problem to be solved is now to show that there exists a way to color the edges of the graph in such a way

that the polarity of each vertex is at most one. Define the polarity of a vertex to be the absolute value of the difference

between the number of red and blue edges incident on it. We’ll show that the required coloring exists by describing

an algorithm to construct it.

db
d d

1

1

h
d

d

d b h
−

=

+
2 1

2
1

(1)
()

(1)

h hh
d h

d

hb h b b
d b hb

b

+ +

=

− + +
= = 

−


Appendix B 649 The Theory: Part IV

Observe that, in any graph that this reduction builds, each vertex corresponds either to a vertical or to a horizontal grid

line. Since each edge connects a “vertical” vertex to a “horizontal” vertex, the graph must be bipartite. (In other

words, it is possible to divide the vertices into two sets, in this case the “horizontal” ones and the “vertical” ones, in

such a way that no edge is incident on two vertices in the same set.)

Now we can exploit anything we know about bipartite graphs. In particular, we’ll use the fact that, in a bipartite graph,

every cycle has an even number of edges. So, in any cycle, we can color the edges alternately, red and blue, without

affecting the polarity of any vertex. Hence, we may remove all cycles from the graph (in arbitrary order) and solve

the coloring problem over the remaining edges. After removing the cycles, we are left with an acyclic undirected

graph, i.e., a tree or a forest of trees.

If the forest is not connected, then each maximal connected tree within it can be colored independently of the others

since no pair of such trees shares any vertices. To color each tree, begin by designating some vertex to be the root.

Color the edges incident on the root alternately. Then pick any vertex that has both colored and uncolored incident

edges. If there is no such vertex then all edges have been colored. Otherwise, the vertex has exactly one colored edge,

say red, incident on it; color the incident uncolored edges alternately starting with blue, so as to meet the polarity

constraint.

36.4 The Undecidability of the Post Correspondence Problem
In Section 22.2, we defined the language:

• PCP = {<P> : P is an instance of the Post Correspondence problem and P has a solution}.

Theorem 22.1 asserts that PCP is in SD/D. We proved that it is in SD by presenting the algorithm, MPCP, that

semidecides it. We will now present the proof that it is not in D.

We begin by defining a related language MPCP (modified PCP). An instance of MPCP looks exactly like an instance

of PCP. So it is a string <P> of the form:

<P> = (x1, x2, x3, …, xn)(y1, y2, y3, …, yn), where j (xj  + and yj  +).

The difference between PCP and MPCP is in the definition of a solution. A solution to an MPCP instance is a finite

sequence 1, i2, …ik of integers such that:

j (1  ij  n and x1xi2…xik = y1yxi2…yik).

In other words, the first index in any solution must be 1.

Recall that Theorem 23.3 tells us that the language La = {<G, w> : G is an unrestricted grammar and w  L(G)} is not

in D. We will show that PCP is not in D in two steps. We will prove that:

• La  MPCP, so MPCP is not in D because La isn’t.

• MPCP  PCP, so PCP is not in D because MPCP isn’t.

Theorem 36.1 MPCP is not in D

Theorem: MPCP is not in D.

Proof: The proof is by reduction from La = {<G, w> : G is an unrestricted grammar and w  L(G)}. Given a string

<G, w>, we show how to construct an instance P of MPCP with the property that P has a solution iff G generates w

(and thus <G, w> is in La). The idea is that we’ll construct the X and Y lists of P so that they can be used to build up

strings that describe derivations that G can produce. We’ll make sure that it is possible to build the same string from

the two lists exactly in case G can generate w.

Appendix B 650 The Theory: Part IV

Let G = (V, , R, S) be an unrestricted grammar. Suppose that G can derive w. Then there is a string of the following

form that describes the derivation:

 S  x1  x2  …  w

Let % and & be two symbols that are not in V. We’ll use % to mark the beginning of a derivation and & to mark the

end. Using this convention, a derivation will look like:

 %S  x1  x2  …  w&

From G and w, the reduction that we are about to define will construct an MPCP instance with the property that both

the X list and the Y list can be used to generate such derivation strings. We’ll design the two lists so that when we use

the X list we are one derivation step ahead of where we are when we use the Y list. So the only way for the two lists

to end up generating the same derivation string will be to choose a final index that lets Y catch up. We’ll make sure

that that can happen only when the final generated string is w.

 X Y Comment

1 %S  % Get started, with X one step ahead.

 &  w& End, with Y doing its last step and catching up.

 c c For every symbol c in V Copy characters that don’t change.

   For every rule  →  in R Apply each rule. X will generate  when Y is one step

behind and so is generating .

  

Table 36.2 Building an MPCP instance from a grammar and a string

Specifically given G = (V, , R, S) and w, we will build the X and Y lists as shown in Table 36.2. The entry that is

listed on line one must be on line one. Since any solution to an MPCP problem must be a sequence that starts with 1,

we thus guarantee that any solution must generate a string that begins with %S . The other entries may occur in any

order. Notice that the entries that correspond to the rules of G are “backwards”. This happens because the X-generated

string is one derivation ahead of the Y-generated one.

To see how this construction works, we’ll consider a simple example. Let G = ({S, A, B, a, b, c}, {a, b, c}, R, S),

where R =

 S → ABc

 S → ABSc

 AB → BA

 Bc → bc

 BA → a

 A → a

Given G and the string w = ac, the reduction will build the MPCP instance shown in Table 36.3. G can derive ac.

So this MPCP instance has a solution, (1, 9, 15, 11, 6, 15, 13, 6, 2), shown in Figure 36.5.

Appendix B 651 The Theory: Part IV

 X Y X Y

1 %S  % 9 ABc S

2 &  ac& 10 ABSc S

3 S S 11 BA AB

4 A A 12 bc Bc

5 B B 13 a BA

6 c c 14 a A

7 b b 15  

8 a a

Table 36.3 An example of building an MPCP instance from a grammar and a string

 1 9 15 11 6 15 13 6 2

 X % S  ABc  BA c  a c &

 Y % S  AB c  BA c  ac&

Figure 36.5 This MPCP instance has (1, 9, 15, 11, 6, 15, 13, 6, 2) as a solution

To complete the proof, we must show that the MPCP instance, P, that is built from the input, <G, w>, has a solution

iff G can derive w. The formal argument can be made by induction on the length of a derivation. We omit it. The

general idea is as we suggested above. Any MPCP solution starts with the index 1. Given the lists as we have

described them, this means that the X-generated string starts out with one more derivation step than does the Y-

generated string. The only way for the Y-generated string to “catch up” is to use the second entry in the table. If that

is done, then the final generated string can only be w. In between the first index and the last one, all the table entries

have been constructed so that all and only derivations that match the rules in G can be generated. So the two lists will

correspond iff G can generate w.

So we have that La  MPCP. Let R(<G, w>) be the reduction that we have just described. If there existed a Turing

machine M that decided MPCP, then M(R(<G, w>)) would decide La. But La is not in D, so no decider for it exists.

So M does not exist either and MPCP is not in D.
◼

Theorem 36.2 PCP is not in D

Theorem: PCP is not in D.

Proof: The proof is by reduction from MPCP. In moving from MPCP to PCP, we lose the constraint that a solution

necessarily starts with 1. But we can effectively retain that constraint by modifying the X and Y lists so that the only

sequences that will cause the two lists to generate the same string must start with 1. Given an MPCP instance <X, Y>,

we will create a PCP instance <A, B> with the property that <X, Y> has a solution iff <A, B> does. The new lists <A,

B> will differ from the original ones in two ways: each list will contain two new strings and each string will be made

twice as long by inserting a special symbol after each original symbol (in the case of the X list) or before each original

symbol (in the case of the Y list).

Let MP = <X, Y> be an instance of MPCP with alphabet  and size n. Let ¢ and $ be two characters that are not in .

We will build P = <A, B>, an instance of PCP with alphabet   {¢, $} and size n+2 as follows:

Assume that: X = x1, x2, …xn and Y = y1, y2, …yn.

We construct: A = a0, a1, a2, …an, an+1 and B = b0, b1, b2, …bn, bn+1.

Appendix B 652 The Theory: Part IV

For values of i between 1 and n, construct the elements of the A and B lists as follows:

• Let ai be xi except that the symbol ¢ will be inserted after each symbol of xi. For example, if xi is aab then ai will

be a¢a¢b¢.

• Let bi be yi except that the symbol ¢ will be inserted before each symbol of yi. For example, if yi is aab then bi

will be ¢a¢a¢b.

Then let: a0 = ¢a1,

 an+1 = $,

 b0 = b1, and

 bn+1 = ¢$.

For example:

If: X = a, baa and Y = ab, aa

Then: A = ¢a¢, a¢, b¢a¢a¢, $ and B = ¢a¢b, ¢a¢b, ¢a¢a, ¢$

Now we must show that MP = <X, Y> has an MPCP solution iff P = <A, B> has a PCP solution:

If MP = <X, Y> has an MPCP solution, then it is of the form (1, j2, j3, … jk), for some k. In that case, the sequence (0,

j2, j3, … jk , n+1) is a solution to P = <A, B>. The string that this new sequence produces will be identical to the string

that the original sequence produced except that there will be the symbol ¢ between each pair of other symbols and the

string will start with ¢ and end with ¢$. We choose the first element of the sequence to be 0 rather than 1 to create the

initial ¢ in the A-generated list, and we add the final element, n+1, so that the B-generated sequence can catch up and

contain the final ¢.

If P = <A, B> has a PCP solution S, then it must be of the form (0, <main part>, n+1), where <main part> is all of S

minus its first and last elements. We know that S has to start with 0 because every string in the B list starts with the

symbol ¢. The only string in the A list that starts with the symbol ¢ is the first one (which we’ve numbered 0). So the

only way that the strings that are generated from the two lists can match is for the first index to be 0. We know that S

must end with n+1 because every string in the A list except the last ends with ¢. But no string in the B list does. But

B’s n+1st element provides that final ¢ and it provides nothing else except the final $. The string that S produces is

identical, if we remove all instances of ¢ and $, to the string that the sequence (1, <main part>) would produce given

<X, Y>. This is true because we constructed elements 1 through n of <A, B> to be identical to the corresponding

elements of <X, Y> except for the insertion of ¢ and $. And we guaranteed, again ignoring ¢ and $, that a0 = a1 = x1.

So the sequence (1, <main part>) generates the same string from both the X and Y lists and its first element is 1. So

it is an MPCP solution for MP = <X, Y>.

So we have that MPCP  PCP. Let R(<X, Y>) be the reduction that we have just described. If there existed a Turing

machine M that decided PCP, then M(R(<X, Y>)) would decide MPCP. But MPCP is not in D, so no decider for it

exists. So M does not exist either and PCP is not in D.
◼

Appendix B 653 The Theory: Part V

37 Part V: Complexity

In this chapter, we will prove some of the claims that were made but not proved in Part V.

37.1 Asymptotic Dominance
In this section we prove the claims made in Section 27.5.

Theorem 37.1 Facts about O

We will prove separately each of the claims made in the theorem. The basis for these proofs is the definition of the

relation O: f(n)  O(g(n)) iff there exists a positive integer k and a positive constant c such that:

n  k (f(n)  c g(n)).

Let f, f1, f2, g, g1, and g2 be functions from the natural numbers to the positive reals, let a and b be arbitrary real

constants, and let c, c0, c1, … ck be any positive real constants. Then:

Fact 1: f(n)  O(f(n)).

Let k = 0 and c = 1. Then n ≥ k (f(n) ≤ c f(n)).

Fact 2: Addition:

1. O(f(n)) = O(f(n) + c0) (if we make the assumption, which will always be true for the functions we will

be considering, that 1  O(f(n))).

We first note that, for any function g(n), if g(n)  O(f(n)) then it must also be true that g(n)  O(f(n) + c0)

since f(n) ≤ f(n) + c0. Now we show the other direction: Since 1  O(f(n)), there must exist k1 and c1 such

that:

n ≥ k1 (1 ≤ c1 f(n))

 (c0 ≤ c0 c1 f(n)). (1)

If g(n)  O(f(n) + c0) then there must exist k2 and c2 such that:

 n ≥ k2 (g(n) ≤ c2(f(n) + c0)).

Combining that with (1), we get:

 n ≥ max(k1, k2) (g(n) ≤ c2(f(n) + c0 c1 f(n))

 ≤ (c2 + c0 c1)(f(n))).

So let k = max(k1, k2) and c = c2 + c0 c1. Then:

 n ≥ k (g(n) ≤ c f(n)).

2. If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) then f1(n) + f2(n)  O(g1(n) + g2(n)).

If f1(n)  O(g1(n)) and f2(n)  O(g2(n)), then there must exist k1, c1, k2 and c2 such that:

 n ≥ k1 (f1(n) ≤ c1 g1(n)).

 n ≥ k2 (f2(n) ≤ c2 g2(n)).

So: n ≥ max(k1, k2) (f1(n) + f2(n) ≤ c1 g1(n) + c2 g2(n)

 ≤ max(c1, c2)(g1(n) + g2(n))).

Appendix B 654 The Theory: Part V

So let k = max(k1, k2) and c = max(c1, c2). Then:

 n ≥ k (f1(n) + f2(n) ≤ c(g1(n) + g2(n))).

3. O(f1(n) + f2(n)) = O(max(f1(n), f2(n))).

We first show that if g(n)  O(f1(n) + f2(n)) then g(n)  O(max(f1(n), f2(n))): If g(n)  O(f1(n) + f2(n)), then

there must exist k1 and c1 such that:

 n ≥ k1 (g(n) ≤ c1(f1(n) + f2(n))

 ≤ 2c1max(f1(n), f2(n))).

So let k = k1 and c = 2c1. Then:

 n ≥ k (g(n) ≤ c max(f1(n), f2(n))).

Next we show that if g(n)  O(max(f1(n), f2(n))) then g(n)  O(f1(n) + f2(n)): If g(n)  O(max(f1(n), f2(n))),

then there must exist k1 and c1 such that:

 n ≥ k1 (g(n) ≤ c1 max(f1(n), f2(n))

 ≤ c1 (f1(n) + f2(n))).

So let k = k1 and c = c1. Then:

 n ≥ k (g(n) ≤ c(f1(n) + f2(n))).

Fact 3: Multiplication:

1. O(f(n)) = O(c0 f(n)).

We first show that, if g(n)  O(f(n)), then g(n)  O(c0 f(n)). If g(n)  O(f(n)), then there must exist k1 and

c1 such that:

 n ≥ k1 (g(n) ≤ c1 f(n)).

So let k = k1 and c = c1/c0. (Thus c1 = c c0.) Then:

 n ≥ k (g(n) ≤ c c0 f(n)).

Next we show that, if g(n)  O(c0 f(n)), then g(n)  O(f(n)). If g(n)  O(c0 f(n)), then there must exist k1

and c1 such that:

 n ≥ k1 (g(n) ≤ c1 c0 f(n)).

So let k = k1 and c = c1 c0. Then:

 n ≥ k (g(n) ≤ c f(n)).

2. If f1(n)  O(g1(n)) and f2(n)  O(g2(n)) then f1(n) f2(n)  O(g1(n) g2(n)).

If f1(n)  O(g1(n)) and f2(n)  O(g2(n)), then there must exist k1, c1, k2 and c2 such that:

 n ≥ k1 (f1(n) ≤ c1 g1(n))

Appendix B 655 The Theory: Part V

 n ≥ k2 (f2(n) ≤ c2 g2(n)).

Thus: n ≥ max(k1, k2) (f1(n) f2(n) ≤ c1 c2 g1(n) (g2(n)).

So let k = max(k1, k2) and c = c1 c2. Then:

 n ≥ k (f1(n) f2(n) ≤ c g1(n) (g2(n)).

Fact 4: Polynomials:

1. If a ≤ b then O(na)  O(nb).

If g(n)  O(na), then there must exist k1 and c1 such that:

 n ≥ k1 (g(n) ≤ c1 na

 ≤ c1 nb) (since (a ≤ b) → (na ≤ nb)).

So let k = k1 and c = c1. Then:

 n ≥ k (g(n) ≤ c nb).

2. If f(n) = cjnj + cj-1nj-1 + … c1n + c0, then f(n)  O(nj).

 n ≥ 1 (cjnj + cj-1nj-1 + … c1n + c0 ≤ cjnj + cj-1nj + … c1nj + c0 nj

 ≤ (cj + cj-1 + … c1 + c0) nj).

So let k = 1 and c = (cj + cj-1 + … c1 + c0). Then:

 n ≥ k (f(n) ≤ c nj).

Fact 5: Logarithms:

1. For a and b > 1, O(loga n) = O(logb n).

Without loss of generality, it suffices to show that O(loga n)  O(logb n). If g(n)  O(loga n), then there

must exist k1 and c1 such that:

 n ≥ k1 (g(n) ≤ c1loga n).

Note that loga n = loga b logb n. So let k = k1 and c = c1loga b. Then:

 n ≥ k (g(n) ≤ c logb n).

2. If 0 < a < b and c > 1 then O(na)  O(na logc n)  O(nb).

First we show that O(na)  O(na logc n). For any n ≥ c, logc n ≥ 1, so na ≤ na logc n. If g(n)  O(na), then

there must exist k1 and c1 such that:

 n ≥ k1 (g(n) ≤ c1na).

So let k = max(k1, c) and c0 = c. Then:

 n ≥ k (g(n) ≤ c0 na logc n).

Next we show that O(na logc n)  O(nb). First, notice that, for p > 0 and n ≥ 1, we have:

Appendix B 656 The Theory: Part V

pp

n

p

n

e n
p

n
p

dxxdxxn
1

)1(
1

log
1

1

1

1 −== 
+−− .

In particular, for p = b – a, we have:

ab

e n
ab

n −

−


1
log .

If g(n)  O(na logc n), then there must exist k1 and c1 such that:

 n ≥ k1 (g(n) ≤ c1na logc n).

So, for all n ≥ max(1, k1), we have that:

bcabac

ec

a

c

a n
ab

ec
nn

ab

ec
necnncnng

−


−
= − loglog

logloglog)(.

So let k = max(1, k1) and c0 =
ab

ec c

−

log . Then:

 n ≥ k (g(n) ≤ c0 nb).

Fact 6: Exponentials (including the fact that exponentials dominate polynomials):

1. If 1 < a ≤ b then O(an)  O(bn).

If g(n)  O(an), then there must exist k1 and c1 such that:

 n ≥ k1 (g(n) ≤ c1an

 ≤ c1bn) (since (a ≤ b) → (an ≤ bn)).

So let k = k1 and c = c1. Then:

 n ≥ k (g(n) ≤ cbn).

2. If a ≥ 0 and b > 1 then O(na)  O(bn).

If a = 0, then we have that O(1)  O(bn), which is trivially true. We now consider the case in which a > 0.

First notice that, if p ≥ 1 and n ≥ p, then:

 dx
x

n

n

e =
1

1
log =  +

n

p

p

dx
x

dx
x

11

1

 ≤ dx
p

p

n

p

e +
1

log

 ≤
p

pn
pe

−
+log

 ≤
p

n
pe +log .

Appendix B 657 The Theory: Part V

If, in particular,)1,
log

max(
b

a
p

e

= , then b
ap

elog1
 , p ≥ 1 and:

 n
a

b
pn e

ee

log
loglog +

 nbpana eee + logloglog .

And:
nbpanaa eee een
+

=
logloglog

 na bp  .

If g(n)  O(na), then there must exist k1 and c1 such that:

 n ≥ k1 (g(n) ≤ c1na).

So, again letting)1,
log

max(
b

a
p

e

= , let k = max(k1, p) and c = c1 pa. Then:

 n ≥ k (g(n) ≤ cbn).

3. If f(n) = cj+12n + cjnj + cj-1nj-1 + … c1n + c0, then f(n)  O(2n).

From 2, we have that cjnj + cj-1nj-1 + … c1n + c0  O(nj). From 2, we have that nj  O(2n). So, using the

transitivity property that we prove in 0, we have that cjnj + cj-1nj-1 + … c1n + c0  O(2n). So there must exist

k1 and c1 such that:

 n ≥ k1 (cjnj + cj-1nj-1 + … c1n + c0 ≤ c1 2n

 cj+12n + cjnj + cj-1nj-1 + … c1n + c0 ≤ cj+12n + c1 2n

 ≤ (cj+1 + c1)2n).

So let k = k1 and c = cj+1 + c1. Then:

 n ≥ k (f(n) ≤ c2n).

Fact 7: Factorial dominates exponentials: If a ≥ 1 then O(an)  O(n!).

First notice that, if a ≥ 1, then:

 

 

 

 

   
−

= ==

−

= =

==
1

11

1

1

a

k

n

ak

n

k

a

k

n

ak

n kaaaaa

 

 

 
 







=
−

=

−

=

−

=


n

ak
a

k

a

k

a

k

k

k

k

a
1

1

1

1

1

1

 


=

−

=


n

k

a

k

k
k

a

1

1

1

Appendix B 658 The Theory: Part V

 

!
1

1

n
k

a
a

k

 
−

=

.

If g(n)  O(an), then there must exist k1 and c1 such that:

 n ≥ k1 (g(n) ≤ c1an).

So let k = k1 and
 


−

=

=
1

1

1

a

k k

a
cc . Then:

 n ≥ k (g(n) ≤ cn!).

Fact 8: Transitivity: If f(n)  O(f1(n)) and f1(n)  O(f2(n)) then f(n)  O(f2(n)).

If f(n)  O(f1(n)) and f1(n)  O(f2(n)), then there must exist k1, c1, k2 and c2 such that:

 n ≥ k1 (f(n) ≤ c1 f1(n)).

 n ≥ k2 (f1(n) ≤ c2 f2(n)).

So let k = max(k1, k2) and c = c1 c2. Then:

 n ≥ k (f(n) ≤ c f2(n)).
◼

Theorem 37.2 Facts about o

We will prove separately the two claims made in the theorem. The basis for these proofs is the definition of the

relation o: f(n)  o(g(n)) iff, for every positive c, there exists a positive integer k such that:

n  k (f(n) < c g(n)).

Let f and g be functions from the natural numbers to the positive reals. Then:

1. f(n)  o(f(n)):

Let c = 1. Then there exists no k such that n  k (f(n) < c f(n), and

 f(n) < f(n)).

2. o(f(n))  O(f(n)):

If g(n)  o(f(n)) then, for every positive c1, there exists a k1 such that: n  k (g(n) < c f(n)). To show that

g(n)  O(f(n)), it suffices to find a single c and k that satisfy the definition of O. Let c = 1 and let k be the

k1 that must exist if c1 = 1.
◼

37.2 The Linear Speedup Theorem
In Section 27.5 we introduced the theory of asymptotic dominance so that we could describe the time and space

requirements of Turing machines by the rate at which those requirements grow, rather than by some more exact

measure of them. One consequence of this approach is that constant factors get ignored. This makes sense for two

reasons. The first is that, in most of the problems we want to consider, such factors are dominated by much faster

growing ones, so they have little impact on the size of the problems that we can reasonably solve.

Appendix B 659 The Theory: Part V

But a second reason is the one that we will focus on here: All but the most efficient Turing machines can be sped up

by any constant factor. The idea behind this claim is simple. At each step of its operation, a Turing machine visits

one tape square. If we can compress the contents of the tape so that they fit on fewer squares, we can reduce the

number of steps that a Turing machine must execute to process the tape. Compressing a tape is easy. We simply

increase the size of the tape alphabet. That enables us to encode a chunk of squares from the original tape into a single

square of the new one.

Example 37.1 Encoding Multiple Tape Squares as a Single Square

Let M be a Turing machine whose tape alphabet is {0, 1, }. We can build a new Turing machine M that uses the

tape alphabet {A-Z, a-z, 0-9, -}. Using the new alphabet, we can encode five squares of M’s tape as a single

square on the tape M will use. Initially, we’ll include in the encoding at least one blank on either side of the input

(plus more on the right for padding if necessary). If M ever moves off its input, new squares can be encoded as

necessary. So, for example:

If the tape of M is: …000000000001000010…

Then the tape of M might be: C 8 f 

If we design the transitions of M appropriately, it will be able to do in one step what it takes M six steps to do.

The compression idea that we have just described is the basis of the Linear Speedup Theorem that we are about to

present. Before we go into the details of the theorem and its proof, one caveat is in order. While this theorem is of

some theoretical interest, its application to real computers is limited. Real computers have a fixed size alphabet

(generally consisting of two binary symbols). So the sort of compression that we are using here cannot be applied.

However, it is worth noting that other compression algorithms (that exploit patterns in particular kinds of input strings

and are thus able to reduce the number of bits required) are routinely used in many kinds of real applications.

Theorem 37.3 The Linear Speedup Theorem

Theorem: Let M be a k-tape Turing machine where k > 1 and timereq(M) = f(n). Given any constant c > 0, there exists

another k-tape Turing machine M such that L(M) = L(M) and:

()
() 2 2 6

f n
timereq M n c

c

 
  + +     

 

.

Notice that c is a factor by which we reduce the time a computation requires. So, if we want to say that the new

program takes half as long, we set c to 2. In some statements of the theorem, c is a multiplicative factor. Using those

versions, we’d set c to ½ in that case. The two formulations are equivalent.

Proof: We prove the claim by describing the operation of M. M will begin by making one pass across its input tape

to encode it as described in Example 37.1. It will store the encoded string on tape 2 and blank out tape 1. During the

rest of its operation, it will use tape 1 as M would have used tape 2 and vice versa. The number of symbols to be

collapsed into one at this step is determined by c, the speedup that is desired. We’ll call this collapsing factor m and

set it to 6c.

Next M simulates the execution of M. The idea here is that, since M encodes m symbols as one, it can process m

symbols as one. Unfortunately, on any one tape, the m symbols that M needs may be spread across two of the new

encoded tape squares: They may fall on the current square plus the one to its right or they may fall on the current

square plus the one to its left. So M must make one move to the left, then one back, and then one more to the right

and then back before it can be sure that it has all the information it needs to make the move that simulates m moves of

M. We illustrate this with the following example. Let k = 2 and m = 5. Each tape square actually contains a single

symbol that encodes five original symbols, but we’ve shown them here with the original sequences so that it is possible

to see how the simulation works. Suppose that, at some point in its computation, M has entered some state q and its

tapes contain the following fragments:

Appendix B 660 The Theory: Part V

 Tape 1: . . . 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 . . .

 Tape 2: . . . 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 . . .

If the next five moves of M move the read/write head on tape 1 to the right five times and they move the read/write

head on tape 2 to the left five times, M will need to examine both one encoded square to the left and one encoded

square to the right before it will have enough information to simulate all five of those moves.

So M simulates M by doing the following:

1. Move one square to the left on each of the tapes and record in the state the encoded symbol it finds on each

of the k tapes.

2. Move one square back to the right on each tape and record in the state the encoded symbol it finds on each

of the k tapes.

3. Move one more square to the right on each tape and record in the state the encoded symbol it finds on each

of the k tapes.

4. Move one square back to the left on each tape.

At this point, the read/write heads of M are back where they started and the state of M includes the following

vector of information that captures the current state of M:

 (q, M’s state.

 L1, C1, R1, t1, The relevant contents of tape 1:

 L1 is the encoded square to the left of the one that contains M’s

simulated read/write head.

 C1 is the encoded square that contains M’s simulated read/write head.

 R1 is the encoded square to the right of the one that contains M’s

simulated read/write head.

 t1 (an integer between 1 and m) is the position within C1 of M’s

simulated read/write head.

 L2, C2, R2, t2, Tape 2: similarly.

 …

 Lk, Ck, Rk, tk) Tape k: similarly

5. Using this information, make one move that alters the C squares as necessary and moves each read/write

head as required to simulate M. Also update M’s state.

6. Make one more move if necessary. If, on some tape, M’s simulated read/write head moved off the C square,

it will be necessary to make this second move in order to alter the contents of either the L or R square to

match what M would have done. But note that, on any given tape, it will only be necessary to work with the

current square plus one to the left or the current square plus one to the right. So two moves suffice to make

all necessary changes to the tapes.

The first phase, encoding the input tape, requires that M make one complete pass through the input and then move

back to the left. It may have to use up to m padding blanks. So, in the worst case, on an input of length n this phase

requires 2(n+m) steps. The second phase, simulating M, requires at most six steps for every m steps that M would

have executed. So, if timereq(M) = f(n), then:

 6 ()
() 2()

f n
timereq M n m

m

 
  + + 

 

.

Appendix B 661 The Theory: Part V

Since m = 6c, we then have:

 ()
() 2 2 6

f n
timereq M n c

c

 
  + +     

 

.

◼

	AutomataTheoryBook-Split12_Part2
	AutomataTheoryBook-Split13_Part1

